
MODELSWARD 2020

February 27, 2020

CONTEXT MAPPER:

DOMAIN-SPECIFIC LANGUAGE AND

TOOLS FOR STRATEGIC DOMAIN-

DRIVEN DESIGN, CONTEXT MAPPING

AND BOUNDED CONTEXT MODELING

Prof. Dr. Olaf Zimmermann

Stefan Kapferer

HSR FHO

ozimmerm@hsr.ch

stefan.kapferer@hsr.ch

Session Outline

 Context and motivation

 User stories for Context Mapper

 Application integration example

 Domain-Driven Design (DDD) in a nutshell

 Proposed Modeling Language and Tools

 Domain-Driven Design (DDD) meta model

 Domain-Specific Language (DSL) core

 Generation tools

 Future Work

 Context Mapper as an Architecture Recoverer

 Context Mapper as a (Micro-)Service Decomposer

 Context Mapper as an Enterprise Portfolio Planning Tool

© Stefan Kapferer, Olaf Zimmermann, 2020.

Page 3

User Story 1: Business Analyst Modeling Concepts

Page 4

© Olaf Zimmermann, 2020.

Business Analyst

As a business analyst (specializing on a particular business or technical domain),

I would like to describe the problem domain and its subdomains in a natural, yet precise

and ubiquitous language (i.e., domain concepts, their properties and relations)

so that project sponsor, team and other stakeholders can develop and share a common

understanding about these concepts and their intricacies in the given domain – in line

with Agile values and principles.

 Many design issues, typically recurring

 per system/team

Policies reference
customer data

Data and control flow direction?

Data formats (norms, transformations)?

Frequency of message exchange?

Motivating Example: “Fictitious” Insurance Application Landscape

© Stefan Kapferer, Olaf Zimmermann, 2020.

Page 5

Design issue

(decision required)

Data duplication and/or

on-demand exchange?

Strict/eventual consistency?

Buy? Build? Rent? Technology?

Vendor? Team? (Sourcing, Staffing)

Subdomain,
System, Team

, per relationship, per interface

Client influence on API design and

stability/evolution (governance)?

API contracts and technologies?

Number and size

of (sub-)systems?

User Story 2: Software Architect Designing & Deocmposing Services

Page 6

© Olaf Zimmermann, 2020.

Software Architect (Service Designer)

As a software architect responsible for the design and implementation and integration

of an system supporting and partially automating the results of a domain-driven

business analysis,

I would like to model the subsystems (i.e., Bounded Contexts) and components

(Aggregates) of my architecture and how they interact (Interfaces, collaborations)

so that I can evolve the architecture semi-automatically (i.e, supported by model

refactorings and service decomposition heuristics), communicate the architecture, and

generate other representations of the models such as Unified Modeling Language (UML)

diagrams and service API contracts (or even code).

Decomposition Heuristics

 Two-pizza rule (team size)

 Lines of code (in service implementation)

 Size of service implementation in IDE editor

 Simple if-then-else rules of thumb

 E.g. “If your application needs coarse-grained services, implement a SOA;

if you require fine ones, go the microservices way” (I did not make this up!)

 Non-technical traits, including “products not projects”

Context matters, as M. Fowler pointed out at Agile Australia 2018

(or: one size does not fit all)

© Olaf Zimmermann, 2020.

Page 7

What is wrong with these “metrics” and “best practice”

recommendations?

that do not suffice

https://martinfowler.com/articles/agile-aus-2018.html

Domain-Driven Design (DDD) to the Remedy

 Emphasizes need for modeling and communication

 Ubiquitous language (vocabulary) – the domain model

 Tactic DDD – “Object-Oriented Analysis and Design
(OOAD) done right”

 Emphasis on business logic in layered architecture

 Decomposes Domain Model pattern from M. Fowler

 Patterns for common roles, e.g. Entity, Value Object,

Repository, Factory, Service; grouped into Aggregates

 Strategic DDD – “agile Enterprise Architecture

and/or Portfolio Management”

 Models have boundaries

 Teams, systems and

their relations shown in

Context Maps of

Bounded Contexts

Page 8

© Olaf Zimmermann, 2020.

https://martinfowler.com/eaaCatalog/domainModel.html

A Strategic DDD Context Map with Relationships

 Insurance scenario, example model from https://contextmapper.org/

Page 9

© Stefan Kapferer, Olaf Zimmermann, 2020.

D: Downstream, U: Upstream; ACL: Anti-Corruption Layer, OHS: Open Host Service

Bounded
Context

https://contextmapper.org/
https://www.infoq.com/articles/ddd-contextmapping/
https://www.infoq.com/articles/ddd-contextmapping/
https://docs.microsoft.com/en-us/azure/architecture/patterns/anti-corruption-layer
http://www.methodsandtools.com/archive/archive.php?id=97

Session Outline

 Context and motivation

 User stories for Context Mapper

 Application integration example

 Domain-Driven Design (DDD) in a nutshell

 Proposed Modeling Language and Tools

 Domain-Driven Design (DDD) meta model

 Domain-Specific Language (DSL) core

 Generation tools

 Future Work

 Context Mapper as an Architecture Recoverer

 Context Mapper as a (Micro-)Service Decomposer

 Context Mapper as an Enterprise Portfolio Planning Tool

© Stefan Kapferer, Olaf Zimmermann, 2020.

Page 10

Context Mapper: A DSL for Strategic DDD

 Eclipse plugin, based on:

 Xtext, ANTLR

 Sculptor (tactic DDD DSL)

 Creator: S. Kapferer

 Term projects and Master thesis @ HSR FHO

© Stefan Kapferer, Olaf Zimmermann, 2020.

Page 11

SK: Shared Kernel, PL: Published Language

D: Downstream, U: Upstream

ACL: Anti-Corruption Layer, OHS: Open Host Service

http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
https://www.infoq.com/articles/ddd-contextmapping/
https://www.infoq.com/articles/ddd-contextmapping/
https://docs.microsoft.com/en-us/azure/architecture/patterns/anti-corruption-layer
http://www.methodsandtools.com/archive/archive.php?id=97

 Goal: provide clear and concise interpretation of the strategic DDD

patterns – and valid combinations of them

Reference: https://contextmapper.org/docs/language-model/

Context Mapper: Meta-Model and Semantic Rules

© Stefan Kapferer, Olaf Zimmermann, 2020.

Page 12

https://contextmapper.org/docs/language-model/

Context Mapper: DSL implements Meta-Model and Semantics

 A Domain-Specific Language (DSL) for DDD:

 Formal, machine-readable DDD Context Maps via editors and validators

 Model/code generators to convert models into other representations

 Model transformations for refactorings (e.g., “Split Bounded Context”)

© Stefan Kapferer, Olaf Zimmermann, 2020.

Page 13

Plugin update site: https://dl.bintray.com/contextmapper/context-mapping-dsl/updates/

https://dl.bintray.com/contextmapper/context-mapping-dsl/updates/

Context Mapper: Domain-Specific Language

© Stefan Kapferer, Olaf Zimmermann, 2020.

Page 14

ContextMap DDDSampleMap {

contains CargoBookingContext

contains VoyagePlanningContext

contains LocationContext

CargoBookingContext [SK]<->[SK] VoyagePlanningContext

[U,OHS,PL] LocationContext -> [D] CargoBookingContext

VoyagePlanningContext [D]<-[U,OHS,PL] LocationContext

}

DDD relationship patterns

(role of endpoint)

Influence/data flow direction: ->, <->

(upstream-downstream or symmetric)

Bounded Contexts

(systems or teams)

SK: Shared Kernel, PL: Published Language

D: Downstream, U: Upstream

ACL: Anti-Corruption Layer, OHS: Open Host Service

http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
https://www.infoq.com/articles/ddd-contextmapping/
https://www.infoq.com/articles/ddd-contextmapping/
https://docs.microsoft.com/en-us/azure/architecture/patterns/anti-corruption-layer
http://www.methodsandtools.com/archive/archive.php?id=97

Pros and Cons of Context Mapper DSL

 Pros:

 High understandability and usability for DDD adopters (conformance with

patterns)

 Increased productivity in context mapping

 Iterative (agile) evolution

 Diagrams on different levels of abstraction

 Context, component and class diagrams

 Future-proof: domain modeling is architecture and technology independent

 Framework maturity increased iteratively

 Cons:

 Steep learning curve for modelers not familiar with DDD

 Model-driven approach potentially considered to be "not agile"

 Maintenance of different levels of abstraction in one model (CML)

 Supporting many IDEs will be expensive (currently limited to Eclipse)

© Stefan Kapferer, Olaf Zimmermann, 2020.

Page 15

Session Outline

 Context and motivation

 User stories for Context Mapper

 Application integration example

 Domain-Driven Design (DDD) in a nutshell

 Proposed Modeling Language and Tools

 Domain-Driven Design (DDD) meta model

 Domain-Specific Language (DSL) core

 Generation tools

 Future Work

 Context Mapper as an Architecture Recoverer

 Context Mapper as a (Micro-)Service Decomposer

 Context Mapper as an Enterprise Portfolio Planning Tool

© Stefan Kapferer, Olaf Zimmermann, 2020.

Page 16

Tool Big Picture

 Context Mapper

architecture

 Modelled with Context

Mapper DSL

 UML generated

© Olaf Zimmermann, 2020.

Page 17

Discover Models From Existing Code

Page 18

 Strategy-based reverse engineering

 Discover Bounded Contexts and Context Maps

 Reverse engineer domain models within Bounded Contexts

 Detect relationships between (micro-)services to derive

Context Map

 Potential approaches:

 Detect (micro-)services (Bounded Contexts) by the

framework used for implementation, such as Spring Boot.

 Derive relationships between Bounded Contexts by

analyzing container deployment configurations, such as

Docker Compose.

© Stefan Kapferer, Olaf Zimmermann, 2020.

https://spring.io/projects/spring-boot
https://docs.docker.com/compose/

Context Mapper: Generators (DDD DSL as Input)

 PlantUML generator

 Generate graphical

representations of model

 Service Cutter input

generator

 Use structured approach

to identify service

candidates

 Term project/bachelor

thesis at HSR FHO

 MDSL service contract

generator

 Generate technology-

agnostic (micro-)service

contracts from Bounded

Contexts/Aggregates

© Stefan Kapferer, Olaf Zimmermann, 2020.

Page 19

http://servicecutter.github.io/

http://plantuml.com/
http://servicecutter.github.io/
https://socadk.github.io/MDSL/
http://servicecutter.github.io/

From Biz and Dev to Ops: Bad Smells and Refactorings

Reference: Brogi, A., Neri D., Soldani, J., Zimmermann, O., Design Principles, Architectural

Smells and Refactorings for Microservices: A Multivocal Review. CoRR abs/1906.01553

and Springer SICS (2019) (online, report PDF, short presentation)

© Olaf Zimmermann, 2020.

Page 20

In scope of DDD and Context Mapper

https://rdcu.be/bQfr6
https://arxiv.org/pdf/1906.01553
https://www.summersoc.eu/wp-content/uploads/2019/06/4.10-Davide-Neri-Design-Principles-Architectural-Smells-Refactorings-For-Microservices.pdf

Microservice API Patterns (MAP) Categories

 Identification Patterns:

 DDD as one practice to

find candidate endpoints

and operations

 Evolution Patterns:

 Recently workshopped

(EuroPLoP 2019)

© Olaf Zimmermann, 2020.

Page 21

http://microservice-api-patterns.org

http://microservice-api-patterns.org/

Other Directions and Ideas (for Consideration)

 Increase target audience

 Support more IDEs and Web editing (from Xtext to Theia?)

 Context Mapper as …

 An agile planning tool (or input provider for such tool)?

 An architectural decision identifier and facilitator ("knowledge navigator")?

 An enterprise architecture or portfolio manager (TOGAF, Safe, …)?

 DSLs and supporting tools for …

 Rapid application prototyping (e.g., generate JHipster configurations)?

 Low code/no code development

 Cross-protocol service design (messaging, for HTTP)?

© Olaf Zimmermann, 2020.

Page 22

Looking forward to your comments and ideas –

and opportunities to collaborate (?)

Summary and Outlook

 DDD is a trending approach for concept modeling and service

decomposition

 Applied by many practitioners

 DDD Context Maps are created manually so far

 Context Mapper supports practitioners in applying DDD

 DSL for modeling strategic DDD Context Maps

 Tool support to evolve models iteratively (ARs)

 PlantUML, Service Cutter, and MDSL generation

 Part of a modular and extensible modeling framework for

strategic DDD (and more)

 Reverse engineer models

 Generate code (micro-) service project stubs

 Systematic service decomposition

© Stefan Kapferer, Olaf Zimmermann, 2020.

Page 23

Thank you very much! Let’s move on to Q&A and discussion…

More Information

 Master thesis and previous term project reports:

 http://eprints.hsr.ch/id/eprint/821

 https://eprints.hsr.ch/784/ and https://eprints.hsr.ch/722/

 Context Mapper on the Web:

 https://contextmapper.org/ and https://contextmapper.org/docs/home/

 Eclipse update site:

 https://dl.bintray.com/contextmapper/context-mapping-dsl/updates/

 GitHub repositories:

 DSL: https://github.com/ContextMapper/context-mapper-dsl

 Examples: https://github.com/ContextMapper/context-mapper-examples

© Olaf Zimmermann, 2020.

Page 24

http://eprints.hsr.ch/id/eprint/821
https://eprints.hsr.ch/784/
https://eprints.hsr.ch/722/
https://contextmapper.org/
https://contextmapper.org/docs/home/
https://dl.bintray.com/contextmapper/context-mapping-dsl/updates/
https://github.com/ContextMapper/context-mapper-dsl
https://github.com/ContextMapper/context-mapper-examples

