
Domain-driven Service Design

Context Modeling, Model Refactoring and Contract
Generation

Stefan Kapferer and Olaf Zimmermann

University of Applied Sciences of Eastern Switzerland (HSR/OST),
Oberseestrasse 10, 8640 Rapperswil, Switzerland

{stefan.kapferer, olaf.zimmermann}@ost.ch

Abstract. Service-oriented architectures and microservices have gained
much attention in recent years; companies adopt these concepts and sup-
porting technologies in order to increase agility, scalability, and main-
tainability of their systems. Decomposing an application into multiple
independently deployable, appropriately sized services and then integrat-
ing them is challenging. Domain-driven Design (DDD) is a popular ap-
proach to identify (micro-)services by modeling so-called Bounded Con-
texts and Context Maps. In our previous work, we proposed a Domain-
specific Language (DSL) that leverages the DDD patterns to support ser-
vice modeling and decomposition. The DSL is implemented in Context
Mapper, a tool that allows software architects and system integrators
to create domain-driven designs that are both human- and machine-
readable. However, we have not covered the tool architecture, the iter-
ative and incremental refinement of such maps, and the transition from
DDD pattern-based models to (micro-)service-oriented architectures yet.
In this paper, we introduce the architectural concepts of Context Map-
per and seven model refactorings supporting decomposition criteria that
we distilled from the literature and own industry experience; they are
grouped and serve as part of a service design elaboration method. We
also introduce a novel service contract generation approach that leverages
a new, technology-independent Microservice Domain-Specific Language
(MDSL). These research contributions are implemented in Context Map-
per and being validated using empirical methods.

Keywords: Domain-driven Design · Domain-specific Language · Mi-
croservices · Model-driven Software Engineering · Service-oriented Ar-
chitecture · Architectural Refactorings

1 Introduction

Domain-driven Design (DDD) was introduced in a practitioner book in 2003 [8].
Tactical DDD patterns such as Aggregate, Entity, Value Object, Factory, and
Repository have been used in software engineering to model complex domains
in an object-oriented way since then. While these tactical patterns focus on the
domain model of an application, strategic ones such as Bounded Context and



2 Stefan Kapferer and Olaf Zimmermann

Context Map establish domain model scopes as well as the relationships between
such scopes. The strategic DDD patterns have gained attention through the
popularity of microservices recently [33].

The tactical part within a Bounded Context can be modeled with UML or
existing Domain-Specific Languages (DSLs) for DDD such as Sculptor1. Existing
modeling tools have not supported the strategic patterns explicitly; Context
Maps that use these relationships have had to be created manually so far. Hence,
Context Mapper2 [18] proposes and implements a DSL that allows business
analysts, software architects, and system integrators to describe such models in
a precise and expressive way.

The identification of Bounded Contexts is still a difficult task. Conflicting
criteria have to be applied when splitting a domain into Bounded Contexts or
monolithic systems into services. Many such criteria have been proposed by prac-
titioners and researchers. However, not many concrete practices and systematic
approaches how to decompose the models exist to date. Thus, we researched the
criteria to be used for service decomposition and derived a series of Architec-
tural Refactorings (ARs) [34] to decompose DDD-based models written in the
Context Mapper DSL (CML) iteratively and incrementally.

Furthermore, the DDD patterns do not define how to realize the modeled con-
texts in (micro-)service-oriented architectures. We propose a mapping from the
DDD patterns to Microservice API patterns (MAP) concepts3 and Microservice
Domain-Specific Language (MDSL)4, a novel, technology-independent service
contract and API description language.

In summary, the contributions of this paper are: a) a novel, layered and
extensible tool architecture for DDD-based architecture modeling and discovery,
b) a model refactoring catalog, tool, and method and c) a meta-model mapping
(from DDD to service-oriented architectures) that allows Context Mapper to
generate technology-independent service contracts (MDSL).

The remainder of this paper is structured as follows. Section 2 introduces
key DDD concepts and patterns, and explains them in a fictitious insurance ex-
ample. The section also establishes the context and vision of our work. Section
3 introduces our three research contributions: the modular and extensible tool
architecture, a model refactoring catalog and method, and a service contract
generation approach for DDD Context Maps. In Section 4 we outline our valida-
tion activities including prototyping, action research and case studies. Section 5
covers related work. Finally, Section 6 summarizes the paper and outlines future
work. Appendix A introduces MDSL.

1 http://sculptorgenerator.org/
2 https://contextmapper.org/
3 https://microservice-api-patterns.org/
4 https://microservice-api-patterns.github.io/
MDSL-Specification/

http://sculptorgenerator.org/
https://contextmapper.org/
https://microservice-api-patterns.org/
https://microservice-api-patterns.github.io/MDSL-Specification/
https://microservice-api-patterns.github.io/MDSL-Specification/


Domain-driven Service Design 3

2 Context, Vision, and Previous Work

2.1 Domain-driven Design (DDD) Pattern Essentials

Since the publication of the first DDD book by Evans [8], other – mostly gray –
literature has been published [33]. Our interpretation of the patterns primarily
follows the guidelines from Evans and Vernon. The CML language [18] supports
the strategic as well as the tactical patterns based on these books. Strategic
DDD is used to decompose a domain into Subdomains and so-called Bounded
Contexts (i.e., abstractions of (sub-)systems and teams). A Bounded Context
establishes a boundary within which a particular domain model applies. The
domain model has to be consistent within this boundary and the terms of the
domain have to be clearly defined to build a ubiquitous language. The Context
Map describes the relationships between these Bounded Contexts. Figure 1 il-
lustrates a Context Map of the fictitious insurance application called Lakeside
Mutual5. The strategic patterns Partnership and Shared Kernel describe sym-
metric relationships where two Bounded Contexts have organizational or domain
model related interdependencies. In Upstream-Downstream relationships on the
other hand only one Bounded Context is dependent on the other. The upstream-
downstream metaphor indicates the influence flow between teams and systems
as discussed by Plöd [26].

Fig. 1. Context Map: Lakeside Mutual Microservice Project

The patterns Open Host Service (OHS), Published Language (PL), Anticorruption-
Layer (ACL) and Conformist allow the modelers to specify the roles of the up-
stream and downstream Bounded Contexts. Table 1 introduces the strategic
DDD patterns relevant for this paper and depicted in Figure 1.

5 https://github.com/Microservice-API-Patterns/LakesideMutual/

https://github.com/Microservice-API-Patterns/LakesideMutual/


4 Stefan Kapferer and Olaf Zimmermann

Table 1: Strategic Domain-driven Design (DDD) Pattern Overview

Pattern Description
Subdomain A subdomain is a part(ition) of the functional domain

that is analyzed and designed. DDD differentiates be-
tween core domains, supporting subdomains, and generic
subdomains [8]. Subdomains (or parts of them) are real-
ized by one or more Bounded Contexts.

Bounded Context A Bounded Context establishes a boundary within which
a particular domain model is valid. The concepts of the
domain must be defined clearly and distinctively within
this boundary, constituting a ubiquitous language [8] for
it. As abstractions of (sub-)systems and teams, Bounded
Contexts realize parts of one or more subdomains.

Context Map A Context Map specifies the relationships between the
Bounded Contexts and how they interact with each other.

Customer/Supplier
(C/S)

A Customer/Supplier (C/S) relationship is an Upstream-
Downstream relationship in which the downstream
Bounded Context influences the upstream a lot. The up-
stream supplier respects the requirements of its down-
stream customer and adjusts its planning accordingly.

Open Host Service
(OHS)

If an upstream team has to provide the same functionality
to multiple downstreams, it can implement a unified and
open API, an Open Host Service (OHS).

Published Lan-
guage (PL)

A context which offers functionalities to other contexts
has to expose some parts of its own domain model. Direct
translations and exposing internals of the domain model
impose coupling. Industry standards or organization-
internal specifications establish a well-documented and
agreed-upon model subset, a Published Language (PL).
This allows providers to guarantee language stability.

Anticorruption
Layer (ACL)

A downstream Bounded Context has to integrate with the
exposed model of the upstream which may not harmonize
with its own domain model. In this case the downstream
team can decide to implement an Anticorruption Layer
(ACL) that translates between the two models and pro-
vides the upstream’s functionality in terms of the down-
stream’s own domain model to reduce coupling.

Conformist (CF) A downstream may decide to simply run with the domain
model of the upstream (and not implement an ACL).
Rather than translating between two different domain
models, the downstream adjusts its own design so that it
fits to the upstream domain model (tight coupling).



Domain-driven Service Design 5

Table 1: Strategic Domain-driven Design (DDD) Pattern Overview

Pattern Description
Partnership (P) A Partnership is a cooperative, symmetric relationship

in which the two Bounded Contexts can only succeed or
fail together. The pattern advises to establish a process
for coordinated planning of development and joint man-
agement of integration in case two contexts are mutually
dependent subsystems or teams.

Shared Kernel
(SK)

A Shared Kernel is a very intimate relationship between
two Bounded Contexts that share a part of their domain
models. Shared Kernel is a symmetric relationship that is
typically implemented as a shared library maintained by
the two teams in charge of the two contexts.

The tactical DDD patterns are used to design the domain model within a
Bounded Context. An Aggregate is a cluster of domain objects which is kept
consistent with respect to invariants. It typically represents a unit of work re-
garding system (database) transactions. Each Bounded Context consists of a set
of Aggregates that cluster Entities, Value Objects, Services, and Domain Events.
Entities have an identity and a life cycle (mutable state); Value Objects are im-
mutable and faceless. Both Entities and Value Objects may define attributes and
methods; Services expose methods only. Domain Events record things that have
happened and are worth reporting (for instance, changes to an Entity’s state).

2.2 Vision, Goals, and our Previous Work

Decomposing a software system into modules, components or services has long
been an open research question and challenging problem in practice. In 1972
Parnas wrote a seminal paper [24] on the criteria to be used for decomposing
systems. Since then, many other researchers and practitioners proposed criteria
and approaches to tackle the challenge. Many practitioners, especially in the mi-
croservice community, suggest to use the strategic DDD patterns to answer the
decomposition question. Systems shall be modeled in terms of Bounded Contexts
in order to implement one (micro-)service per Bounded Context later. Context
Maps and context mapping as a practice shall support the DDD adopters in
identifying Bounded Contexts and in modeling the relationships between them.
However, the identification of the contexts is still challenging. A clear under-
standing of how the DDD patterns can be combined is often missing, and the
hand-drawn models do not offer the possibility to apply concrete refactoring
steps or systematic decomposition approaches. Hence, our first hypothesis is:

Software architects and system integrators can benefit from a modeling
language that lets them describe Context Maps in a precise manner and offers
the possibility to apply systematic decompositions and model transformations.



6 Stefan Kapferer and Olaf Zimmermann

The language can further support business analysts describing a problem
domain and its subdomains in a natural, yet precise and ubiquitous language.

Motivated by this hypothesis we realized the Context Mapper open source
tool and proposed the CML Domain-specific Language (DSL) [18] to describe
such models. Software architectures evolve and Context Maps must emerge itera-
tively. Brandolini [4] has shown how Context Maps can evolve and how Bounded
Contexts can be identified step by step. A precise, machine-readable modeling
approach allows us to offer transformations to improve the architecture in an
agile way and generate other representations such as (micro-) service contracts
out of the models. Our second hypothesis captures this vision:

Adopters of DDD who model Context Maps in a precise manner benefit from
tools that allow them to evolve the architecture semi-automatically (i.e.,
supported by service decomposition heuristics and model refactorings),

document the architecture, and generate other representations of the models
such as Unified Modeling Language (UML) diagrams and service API contracts.

In our previous work [18] we introduced the CML language. Listing 2.1 il-
lustrates the Lakeside Mutual Context Map modeled in CML. The symbol ->
depicts directed Upstream-Downstream relationships; <-> depicts symmetric re-
lationships. The relationship patterns from Table 1 appear in square brackets
[] (this is optional). The language reference can be found online6.

Listing 2.1. Context Map Syntax in CML

ContextMap LakesideMutualSubsystemsAndTeams {
contains CustomerCore, CustomerManagement, CustomerSelfService
contains PolicyManagement, RiskManagement

CustomerCore [OHS,PL] -> CustomerManagement // influence flow: left to right

CustomerSelfService [C ] <- [S] CustomerManagement // flow: right to left

CustomerCore [OHS, PL] -> [CF] CustomerSelfService

CustomerCore [OHS, PL] -> [ACL] PolicyManagement

PolicyManagement [P] <-> [P] RiskManagement // Partnership (symmetric)

CustomerSelfService [SK] <-> [SK] PolicyManagement // Shared Kernel
}

We also proposed a meta-model for the strategic DDD patterns previously
[18]. It clarifies how the patterns can be combined in Context Maps. We also
presented a set of semantic rules that outline pattern combinations that do not
make sense according to our interpretation. The Context Mapper tool imple-
ments these semantic rules to enforce that they are met by CML models.

6 https://contextmapper.org/docs/language-reference/

https://contextmapper.org/docs/language-reference/


Domain-driven Service Design 7

3 Context Mapper Concepts

In this section, we first introduce the Context Mapper tool architecture, which
combines elements from language tool design (editors, linters) with a layered or-
ganization of refactorings and transformations. Next we establish a method for
the stepwise refinement of DDD models via model refactoring, which supports
common decomposition criteria from the literature and is implemented in Con-
text Mapper. Finally, we specify how to map DDD models to service contracts;
this mapping is also implemented in Context Mapper.

3.1 Modular and Extensible Tool Architecture

The Context Mapper framework architecture illustrated in Figure 2 includes
multiple components that allow users to discover, systematically decompose, and
refactor DDD Context Maps. In addition, the generators support transform-
ing the models into other representations. The Context Mapper DSL (CML)
grammar and tool constitute the hub of the three-stage architecture; all other
components are integrated as spokes.

Fig. 2. Context Mapper Framework Architecture: Three Stages, DSL as Hub

The Discovery Library shall support users in brownfield projects to reverse
engineer Context Maps and Bounded Contexts from source code. The design of
the library supports the users in implementing arbitrary discovery mechanisms



8 Stefan Kapferer and Olaf Zimmermann

by applying the Strategy pattern [14]. The Architectural Refactorings (ARs)
[34] (a.k.a. model refactorings) represent one component of the architecture and
shall assist the users in decomposing a system step by step. In Section 3.2 we
will present the AR component in detail. The Structured Service Decomposi-
tion component integrates Service Cutter [10] to derive completely new Context
Maps by using coupling criteria and graph clustering algorithms. In addition,
it is possible to generate PlantUML diagrams, graphical Context Maps (.svg,
.png), or technology-independent service contracts (MDSL) with the generators.
Discovery Library and Service Cutter integration are out of scope of this paper.

All black arrows in Figure 2 are implemented and open sourced. In the future
we plan to close the ”model-code“ gap indicated by the dashed arrow in Figure 2.
Through an enhanced Discovery Library it shall be possible to update the CML
model if generated artifacts such as contracts or code are changed manually.

3.2 Model Refactoring: Catalog, Tool Integration, and Method

In this section we propose a series of model refactorings that allow modelers
to decompose DDD Context Maps, written in CML, in an iterative manner.
They allow to improve the modeled architectures and/or decompose a monolithic
system by splitting up Bounded Contexts and Aggregates step by step. The
ARs are derived from decomposition criteria (DCs) researched in mostly gray
literature and our own practical experience. They are implemented as model
transformations for the CML language in the Context Mapper tool.

a) Distillation of Decomposition Criteria. The refactorings proposed in
this paper are based on criteria to be used for service decomposition. We re-
searched such criteria from literature, the already existing coupling criteria cat-
alog of Gysel et al. [10], and our own professional experience [3,17]. The con-
ducted literature covered research papers such as the one of Parnas [24] and
practitioners articles and online posts from DDD experts such as Brandolini [4],
Plöd [27], Tune and Millet [32] or Tigges [31].

We describe our decomposition criteria and how we derived them in [16]. We
selected a set of five DCs in order to derive and implement prototypical ARs
from the collected criteria. To do so, we applied the following selection criteria:

– Relevance in practice: We chose criteria that are relevant for all software
projects and not only in specific contexts.

– Representativeness: Criteria which are mentioned by multiple sources were
preferred in our selection process.

– Generality : The set of criteria and derived ARs was chosen so that others
could be implemented in a similar way.

Applying the above criteria yielded the following DCs (details appear in [16]):

– DC-1: Business entities: It is common to group attributes and entities which
belong to the same part of the domain. These areas or parts of the domain
form linguistic or domain expert boundaries [32].



Domain-driven Service Design 9

– DC-2: Use cases: It is often recommended to group domain objects which
are used by the same use cases together.

– DC-3: Code owners / development teams: Bounded Contexts are often built
around the owners of the code (development teams).

– DC-4: Likelihood for change: According to Parnas [24], one should isolate
things that change often from things that do not.

– DC-5: Generalized Non-functional Requirement (NFR): NFRs often differ by
subsytem or component. In Context Mapper, model elements that are similar
with respect to an NFR can be grouped. Such NFRs could be mutability,
storage similarity, availability, or security.

From the DCs listed above we then derived ARs that allow refactoring DDD
Context Maps. For the prototypical implementation in our Context Mapper tool7

we focused on Aggregates and Bounded Contexts. To be able to (de-)compose
these objects, we realized ARs that are able to split or merge Aggregates or
Bounded Contexts. Other ARs offer the possibility to extract Aggregates from
a Bounded Context and build a new context based on them. Figure 3 illustrates
the resulting ARs derived.

Fig. 3. Architectural/Model Refactorings by Operation and Element

In our technical report [16] we elaborated context, motivation, and solution
and effect for all ARs presented in this paper. Figure 3 exhibits this template
structure for one exemplary refactoring (AR-3).

b) Realization of Refactorings as Model Transformations for CML.
The CML language leverages Xtext8, a DSL framework building on the Eclipse
Modeling Framework (EMF) [30]. As described in [15], we implemented the ARs
presented above as model transformations for CML. ARs are applied to a CML
model in three steps:

1. DSL Text
parsing−−−−−→ Abstract Syntax Tree (AST) −→ EMF Model

7 https://contextmapper.org/
8 https://www.eclipse.org/Xtext/

https://contextmapper.org/
https://www.eclipse.org/Xtext/


10 Stefan Kapferer and Olaf Zimmermann

2. EMF Model
transformation−−−−−−−−−−→ EMF Model

3. EMF Model −→ Abstract Syntax Tree (AST)
unparsing−−−−−−−→ DSL Text

Figure 4 shows an example Bounded Context, written in CML, on which
the refactoring Split Bounded Context by Owner can be applied. The illustrated
Bounded Context contains two Aggregates which are owned by different teams.
Striving for autonomous teams with clear responsibilities, an application of this
AR ensures that only one team works on a Bounded Context. Applied to this
example, the AR creates a new Bounded Context for one of the Aggregates.

Fig. 4. Example Refactoring: Split Bounded Context by Owner (Team)

Once the architecture model has been refactored, one can use our generators
to transform the Context Map into other representations. In previous work [18]
we introduced our PlantUML9 generator. Figure 5 illustrates an example of a
PlantUML diagram generated with Context Mapper. It shows another simple
Aggregate of our fictitious insurance scenario (two Entities, one Value Object).

c) Stepwise Application of the Refactorings. The ARs presented above are
designed to decompose an application incrementally. Figure 6 outlines a logical
process to decompose a system including a suggested order of AR applications.
Note that the logical order does not mandate a strict, one-time chronological
execution of the steps; other decomposition strategies can be applied as well.
The process might be repeated multiple times.

One has to analyze the domain and identify an initial set of subdomains early
in a(ny) project. Context Mapper allows the users to model the entities that a

9 https://plantuml.com/



Domain-driven Service Design 11

Fig. 5. Generated PlantUML Diagram for an Aggregate

subdomain contains. From use cases, user stories, or techniques such as Event
Storming [5], a set of initial Bounded Contexts has to be identified.

The given contexts can then be decomposed iteratively. As indicated in Fig-
ure 6, Bounded Contexts are typically formed around the features or use cases
(AR-2). If teams are getting too big during the project the contexts might be split
accordingly (AR-3). During the implementation and maintenance of the software
it may become clear which parts of the software exhibit increased volatility. This
may lead to additional decompositions (AR-4). AR-5 can then be further adapt
the decomposition according to quality attributes (QAs) and non-functional re-
quirements (NFRs). AR-7 allows inverting the mentioned operations and merg-
ing split Bounded Contexts.

Figure 6 further illustrates that a Bounded Context is defined by one or
multiple Aggregates that can be decomposed by Entities (AR-1). They can be
merged again with AR-6, similar to Bounded Contexts. The Context Map rela-
tionship definitions and their knowledge which Aggregates are exposed in such
relationships finally allow us to generate MDSL (micro-)service contracts.

3.3 Metamodel-Based Service Contract Generation

As another contribution, we developed a service contract generator that maps
the DDD patterns to MAP patterns, and therefore specifies how such Context
Map models can be transformed into a (micro-)service-oriented architecture.

The architecture models using Domain-driven Design (DDD) patterns al-
low users to describe the decomposition of a software system. However, these
models do not indicate how such a system shall be implemented as microser-



12 Stefan Kapferer and Olaf Zimmermann

Fig. 6. Incremental, Stepwise Architectural Refactoring (AR) Application Process

vices. The Microservice API Patterns (MAP)10 discuss how such microservices
shall be implemented and offer corresponding design patterns. As a DSL to
denote (micro-)service contracts11, the Microservice Domain-Specific Language
(MDSL)12 supports the API Description13 pattern.

A Context Mapper generator produces MDSL contracts from CML Context
Maps, hence proposing a mapping between the two concepts that specifies how
DDD-based models can be implemented as microservices. Lübke et al. [20] pre-
sented the domain abstractions and their relationships that are part of such
microservice API descriptions. Figure 7 illustrates a simplified version of this

10 https://microservice-api-patterns.org/
11 A contract is not a pair of precondition and postcondition here, but an API de-

scription that specifies and governs the message exchange between two services or
subsystems.

12 https://microservice-api-patterns.github.io/
MDSL-Specification/

13 https://microservice-api-patterns.org/patterns/foundation/
APIDescription

https://microservice-api-patterns.org/
https://microservice-api-patterns.github.io/MDSL-Specification/
https://microservice-api-patterns.github.io/MDSL-Specification/
https://microservice-api-patterns.org/patterns/foundation/APIDescription
https://microservice-api-patterns.org/patterns/foundation/APIDescription


Domain-driven Service Design 13

Fig. 7. MAP API Domain Model [20] to Strategic DDD Mapping

domain model and the mapping. An API description [20] describes the exposed
endpoints with its operations. An operation expects and delivers specific data
types. The described API is used by an API client and exposed by an API
provider. Table 2 describes the mappings introduced in Figure 7 in detail; Ap-
pendix A then introduces MDSL including its MAP decorators.

Table 2: DDD Context Map to Service Contract Mapping

DDD Concept MAP Concept Description
Bounded Contexts
(that are upstream
in a relationship)

API contract As many DDD experts we suggest
to implement one microservice per
Bounded Context. Therefore, we
create one API contract per context.

Aggregates exposed
by Upstream

API endpoint We suggest to create a separate end-
point for every Aggregate.

Methods in Aggre-
gate root Entities or
Services

Operation From methods defined in root Enti-
ties or Services that are part of the
Aggregate we derive operations.

Parameters and re-
turn types of the
methods mentioned
above

Data type defini-
tions (referenced
in request and re-
sponse messages of
operations)

The methods that are mapped to
API operations as described above
declare parameters and return types.
From these types we derive corre-
sponding data type definitions.



14 Stefan Kapferer and Olaf Zimmermann

Table 2: DDD Context Map to Service Contract Mapping

DDD Concept MAP Concept Description
Upstream Bounded
Context

API provider The upstream context in an
Upstream-Downstream relationship
exposes parts of his domain model
to be used by the downstream. It is
therefore the API provider.

Downstream
Bounded Context

API client The downstream context uses parts
of the domain model that are ex-
posed by the upstream. It is there-
fore mapped to the API client.

The MDSL generator in Context Mapper is documented online14. The fol-
lowing Listing 3.1 shows an excerpt of an example MDSL contract generated
from the Lakeside Mutual insurance project we modeled in CML.

Listing 3.1. MDSL Example Contract

API description CustomerCoreAPI // a.k.a. service contract
usage context PUBLIC_API for BACKEND_INTEGRATION and FRONTEND_INTEGRATION

data type Customer { "firstname":D<string>, "lastname":D<string>,
"sin":SocialInsuranceNumber, "addresses":Address* }

data type SocialInsuranceNumber { "sin":D<string> }
data type Address { "street":D<string>, "postalCode":D<int>, "city":D<string> }
data type AddressId P // placeholder, AddressId not specified in detail
data type createAddressParameter { "customer":Customer, "address":Address }

endpoint type CustomersAggregate
exposes

operation createAddress
expecting
payload createAddressParameter

delivering
payload AddressId

operation changeAddress
expecting
payload Address

delivering
payload D<bool>

API provider CustomerCoreProvider
offers CustomersAggregate
at endpoint location "http://localhost:8000"

via protocol "RESTful HTTP"

API client CustomerSelfServiceClient
consumes CustomersAggregate

API client CustomerManagementClient
consumes CustomersAggregate

API client PolicyManagementClient
consumes CustomersAggregate

The first block of the contract describes the data types that are used by the
operations. The middle part lists the API endpoints with its operations. Each

14 https://contextmapper.org/docs/mdsl/

https://contextmapper.org/docs/mdsl/


Domain-driven Service Design 15

operation declares the data types that it expects and delivers. The last part of
the contract declares the API providers and clients, derived from the upstream
and downstream Bounded Contexts.

DDD and Context Mapper promote SOA and cloud principles such as isolated
state, distribution and loose coupling.

Our contract generator contributes a mapping to derive candidate service
architectures from DDD Context Maps. Further automation is possible, for in-
stance microservice project stubs (i.e., client and server code) can also be gen-
erated, as well as elastic infrastructure code.

4 Validation

We hypothesized that DDD adopters and service designers can benefit from
Context Mapper as a modeling tool providing architectural/model refactorings
in Section 2.2. The main objective of our ongoing validation activities is to
show that the tool is indeed useful and beneficial for the target user group. We
validate the tool according to the recommendations of Shaw [29] to demonstrate
correctness, usefulness and effectiveness. Hence, we apply empirical validation
strategies such as prototyping, action research [1] and case study.

Our Context Mapper implementation prototype uses the Xtext DSL frame-
work in version 2.20.0 and is offered as plugin in the Eclipse marketplace15 (it is
compatible with Eclipse 4.8 and newer). The tool is developed iteratively using
CI/CD pipelines16; at the time of writing, 55 releases have been made. Context
Mapper is listed in our Design Practice Repository.17

Context Mapper implements the Architectural Refactorings (ARs) from Sec-
tion 3 (and several more) as code refactorings for the Context Mapping DSL
(CML). These ARs have to be validated w.r.t. their usefulness and effective-
ness. During their implementation, we conducted action research to improve the
concepts iteratively in short feedback cycles. We modeled larger, realistic sam-
ple projects such as Lakeside Mutual18 with CML; an examples repository19 is
available. We also conducted a case study on a real-world project in the health-
care sector [11]. Another real-world use (case study, action research) of Context
Mapper is an ongoing research collaboration with a fintech startup; requirements
and technical designs of the startup and its clients are modelled in CML with the
objective to be able to rapidly respond to business model changes on the API
design level. We further used the tool as part of an exercise accompanying the
DDD lesson of the software architecture course at our institution and collected
the feedback of more than 20 exercise participants. We were able to evaluate the
simplicity of the tool usage and could improve it according to the feedback.

15 https://marketplace.eclipse.org/content/context-mapper/
16 https://travis-ci.com/github/ContextMapper/
17 https://github.com/socadk/design-practice-repository/
18 https://github.com/Microservice-API-Patterns/LakesideMutual/
19 https://github.com/ContextMapper/context-mapper-examples/

https://marketplace.eclipse.org/content/context-mapper/
https://travis-ci.com/github/ContextMapper/
https://github.com/socadk/design-practice-repository/
https://github.com/Microservice-API-Patterns/LakesideMutual/
https://github.com/ContextMapper/context-mapper-examples/


16 Stefan Kapferer and Olaf Zimmermann

Using a DSL also has its weaknesses. For example: members of the agile
community might argue that it does conform with agile practices (“working
software over comprehensive documentation”). The “model-code” gap [9] is a
weakness of most DSL tools and generators.

The validation results so far support our hypothesis that the target user group
can indeed benefit from refactorings implemented as model transformations to
ease the creation, evolution and usage of DDD in general and Context Maps in
particular; we have to further validate the ARs and their systematic application.

5 Related Work

Domain-driven Design (DDD) Tools. DDD has not only been adopted by
practitioner communities, but is picked up in academia as well [7,12,19,21,23,25,28].
However, very few tools specific to DDD exist; agile modeling on whiteboards is
commonly practiced. UML tools can be profiled to support DDD as well. None
of the existing tools uses a hub-and-spoke architecture.

Architectural Refactorings. The Architectural Refactorings (ARs) [34] pro-
posed in this paper are derived from criteria that are known to be used to
decompose software systems. Many of the criteria used to do this are mentioned
by the coupling criteria catalog20 of Service Cutter [10]. The first research paper
regarding this topic was published by Parnas [24]. His approach separates parts
that change often from other parts of the system. Tune and Millet [32] mention
use cases and other domain heuristics such as language, domain expert bound-
aries, business process steps, data flow, or ownership as criteria that have to be
considered. They also mention the importance of co-evolving organizational and
technical boundaries which is known as “Conway’s Law” [6].

A similar list of criteria has been proposed by Tigges [31]. Linguistic and
model differences are the primary drivers for Bounded Context identification ac-
cording to Plöd [27]. He emphasizes that microservice characteristics such as the
organization around business capabilities21, decentralized governance, and evo-
lutionary design suit the idea behind Bounded Contexts. Brandolini [4] explains
how Context Maps can evolve in iterative steps. He recommends event storming
[5], a workshop technique to analyze domains and derive Bounded Contexts.

These and many other DDD experts propose criteria and practices for decom-
posing a software system. However, none of them propose concrete systematic or
algorithmic solutions for the decomposition process. Our ARs aim at formalizing
this process and offer concrete procedures and steps that can be realized as code
refactorings for DDD-based modeling languages such as CML.

To the best of our knowledge, comparable architecture modeling tools that
are based on strategic DDD patterns do not exist. As Mens and Tourwé [22]

20 https://github.com/ServiceCutter/ServiceCutter/wiki/
Coupling-Criteria/

21 https://searchapparchitecture.techtarget.com/definition/
business-capability/

https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria/
https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria/
https://searchapparchitecture.techtarget.com/definition/business-capability/
https://searchapparchitecture.techtarget.com/definition/business-capability/


Domain-driven Service Design 17

mention, there has been a trend towards refactorings on design level. For example
Boger et al. [2] discuss refactorings on the level of UML diagrams. Although no
similar DSLs with refactorings exist, the technical concept behind them is not
new. The ARs are implemented as model transformations [15] that are applied
to the Eclipse Modeling Framework (EMF) models [30] behind our Xtext-based
DSL [18]. Ivkovic and Kontogiannis [13] introduce another approach to refactor
software architecture artifacts using model transformations.

Microservice Contract Generation. With our Microservices Domain-Specific
Language (MDSL) contract generator we provide a tool that supports architects
regarding the question how DDD-based architecture models can be implemented
as microservices. The OpenAPI initiative22 formerly known as Swagger23 is a
popular notation for HTTP resource API contracts; many tools exist, including
editors, test tools and server stub and client proxy code gererators.

6 Summary and Outlook

In this paper we presented the concepts of Context Mapper and its open source
tools. Context Mapper provides an architecture modeling language supporting
strategic and tactic Domain-driven Design (DDD). As our research contribu-
tions, we proposed a) a modular and extensible framework architecture for DDD-
based modeling tools, b) a tool-supported refactoring catalog and method for
decomposing systems step by step from DDD Context Maps, and c) a mapping
from DDD to the domain model of the Microservice API patterns (MAP) lan-
guage that specifies how DDD models can be realized as microservice contracts,
expressed in the emerging Microservice Domain-Specific Language (MDSL). The
provided tool capabilities support DDD adopters in formalizing DDD Context
Maps and evolving them in an iterative manner.

Our validation via implementation (prototyping), action research, and case
studies already support our hypothesis that the modeling language and the trans-
formation tools can support architects when modeling domain-driven designs and
decomposing software systems. Additional validation activities are required to
find out whether the proposed ARs are sufficient or will have to be extended.

In our future work we plan to evolve and enhance Context Mapper by extend-
ing its framework components. The tool shall evolve into a modeling framework
that not only allows describing models and generating contracts from them, but
also supports software maintainers that reverse engineer models from source
code. The AR-based decomposition method will be validated and matured fur-
ther. In addition, we could support additional analysis and design transforma-
tions and let the service contract generator create microservice project stubs.
Using the JDL of JHipster24, a popular rapid application development platform

22 https://www.openapis.org/
23 https://swagger.io/
24 https://www.jhipster.tech/jdl/

https://www.openapis.org/
https://swagger.io/
https://www.jhipster.tech/jdl/


18 Stefan Kapferer and Olaf Zimmermann

(generating JavaScript frontends and Java/Spring backends from architectural
input) is another direction towards generating client and server code. Last but
not least, providing support for multiple IDEs (for instance, Visual Studio Code)
can (and already has) increased our user group.

Acknowledgements: This work was supported by the Hasler Foundation25 in
the project “Domain-Driven Digital Service Engineering”.

A Appendix: Introduction to MDSL

Microservice Domain-Specific Language (MDSL)26 abstracts from technology-
specific interface description languages such as OpenAPI/Swagger, WSDL, and
Protocol Buffers. MDSL design principles are a) promote platform and protocol
independence with a modular language structure separating abstract contracts
from provider bindings, b) support agile modeling practices with partial specifi-
cations and c) promote readability over parsing efficiency.

The abstract syntax of MDSL is inspired and driven by the domain model
and concepts of Microservice API Patterns (MAP), featuring endpoints, oper-
ations, and data representation elements [20]. The concrete syntax of service
endpoint contracts is elaborate; the concrete syntax of data contracts is compact
yet simple. It generalizes data exchange formats such as JSON and type systems
in service-centric programming languages such as Ballerina and Jolie. Endpoint,
operation, and one representation element can be decorated with patterns from
MAP[20]; these decorator annotations are first-class language concepts that can
be processed by tools later. For instance, API linters may validate them, and
they could influence the output of cloud deployment scripts.

Most programming languages declare variables by name and type; MDSL
uses a name-role-type triple (e.g., "customerName": ID<String>) to specify
Atomic Parameters. The role can be any element stereotype from MAP (i.e.,
ID(entifier), Link, Data, or Metadata). A generic, unspecified placeholder P can
replace role and type; the parameter name is optional if the role is defined.
Implementing the Parameter Tree pattern from MAP, simple (yet powerful)
nesting is supported in an object- and block-like curly brace syntax {{...},
{...}} known from data representation languages such as JSON. Cardinalities
such as ?, *, + can be specified as well. Listing A.1 gives an example:

25 https://haslerstiftung.ch/
26 https://microservice-api-patterns.github.io/

MDSL-Specification/index

https://haslerstiftung.ch/
https://microservice-api-patterns.github.io/MDSL-Specification/index
https://microservice-api-patterns.github.io/MDSL-Specification/index


Domain-driven Service Design 19

Listing A.1. MDSL Example: Data Contract and Endpoint Contract

API description HelloWorldAPI // a.k.a. service contract
data type SampleDTO {ID, D<int>} // partially specified tree (two leaves)

endpoint type HelloWorldEndpoint serves as PROCESSING_RESOURCE // MAP decorator
exposes
operation sayHello with responsibility COMPUTATION_FUNCTION // MAP decorator

expecting payload "greeting": D<string>+ // one or more greetings
delivering payload <<error_report>> SampleDTO // MAP decorator (<<pattern>>)

API provider HelloWorldAPIProvider1
offers HelloWorldEndpoint
at endpoint location "https://..." via protocol HTTP

API client HelloWorldAPIClient1
consumes HelloWorldEndpoint
from HelloWorldAPIProvider1 via protocol HTTP

sayHello accepts a scalar string value D<string> as input. This opera-
tion returns a Data Transfer Object (DTO) called SampleDTO, which is modeled
explicitly so that its specification can be used elsewhere too. SampleDTO is spec-
ified incompletely: it pairs two atomic parameters, in ID and (D)ata roles, whose
names and types have not been specified. This partial yet expressive specification
supports early use and continuous refinement. For instance, MDSL specifications
can be drafted in workshops with non-technical stakeholders and then completed
iteratively and incrementally (e.g, adding data type information).

References

1. Avison, D.E., Lau, F., Myers, M.D., Nielsen, P.A.: Action research. Commun. ACM
42(1), 94–97 (Jan 1999). https://doi.org/10.1145/291469.291479

2. Boger, M., Sturm, T., Fragemann, P.: Refactoring browser for uml. In: Objects,
Components, Architectures, Services, and Applications for a Networked World. pp.
366–377. Springer Berlin Heidelberg (2003)

3. Brandner, M., Craes, M., Oellermann, F., Zimmermann, O.: Web services-oriented
architecture in production in the finance industry. Informatik Spektrum 27(2),
136–145 (2004). https://doi.org/10.1007/s00287-004-0380-2

4. Brandolini, A.: Strategic domain driven design with context mapping. https:
//www.infoq.com/articles/ddd-contextmapping (2009)

5. Brandolini, A.: Introducing EventStorming: An act of Deliberate Collective Learn-
ing. Leanpub (2018)

6. Conway, M.: Conway’s law (1968)

7. Di Francesco, P., Lago, P., Malavolta, I.: Migrating towards microser-
vice architectures: An industrial survey. In: 2018 IEEE International
Conference on Software Architecture (ICSA). pp. 29–2909 (April 2018).
https://doi.org/10.1109/ICSA.2018.00012

8. Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley (2003)

9. Fairbanks, G.: Just enough software architecture: a risk-driven approach. Marshall
& Brainerd (2010)

https://doi.org/10.1145/291469.291479
https://doi.org/10.1007/s00287-004-0380-2
https://www.infoq.com/articles/ddd-contextmapping
https://www.infoq.com/articles/ddd-contextmapping
https://doi.org/10.1109/ICSA.2018.00012


20 Stefan Kapferer and Olaf Zimmermann

10. Gysel, M., Kölbener, L., Giersche, W., Zimmermann, O.: Service cutter: A sys-
tematic approach to service decomposition. In: Aiello, M., Johnsen, E.B., Dustdar,
S., Georgievski, I. (eds.) Service-Oriented and Cloud Computing. pp. 185–200.
Springer International Publishing, Cham (2016)

11. Habegger, M., Schena, M.: Cloud-Native Refactoring in einem mHealth Szenario.
Bachelor thesis, University of Applied Sciences of Eastern Switzerland (HSR FHO)
(2019), https://eprints.hsr.ch/806/

12. Hippchen, B., Giessler, P., Steinegger, R., Schneider, M., Abeck, S.: Designing
microservice-based applications by using a domain-driven design approach. Inter-
national Journal on Advances in Software (1942-2628) 10, 432 – 445 (12 2017)

13. Ivkovic, I., Kontogiannis, K.: A framework for software architecture refactoring
using model transformations and semantic annotations. In: Conference on Soft-
ware Maintenance and Reengineering (CSMR’06). pp. 10 pp.–144 (March 2006).
https://doi.org/10.1109/CSMR.2006.3

14. Johnson, R., Gamma, E., Vlissides, J., Helm, R.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995)

15. Kapferer, S.: Model Transformations for DSL Processing. Term project, Univer-
sity of Applied Sciences of Eastern Switzerland (HSR FHO) (2019), https:
//eprints.hsr.ch/819/

16. Kapferer, S.: Service Decomposition as a Series of Architectural Refactorings. Term
project, University of Applied Sciences of Eastern Switzerland (HSR FHO) (2019),
https://eprints.hsr.ch/784/

17. Kapferer, S., Jost, S.: Attributbasierte Autorisierung in einer Branchenlösung für
das Versicherungswesen. Bachelor thesis, University of Applied Sciences of Eastern
Switzerland (HSR FHO) (2017), https://eprints.hsr.ch/602/

18. Kapferer, S., Zimmermann, O.: Domain-specific language and tools for strategic
domain-driven design, context mapping and bounded context modeling. In: Proc.
of the 8th International Conference on MODELSWARD. pp. 299–306. INSTICC,
SciTePress (2020). https://doi.org/10.5220/0008910502990306

19. Landre, E., Wesenberg, H., Rønneberg, H.: Architectural improvement by
use of strategic level domain-driven design. In: Companion to the 21st
ACM SIGPLAN OOPSLA. pp. 809–814. ACM, New York, NY, USA (2006).
https://doi.org/10.1145/1176617.1176728

20. Lübke, D., Zimmermann, O., Pautasso, C., Zdun, U., Stocker, M.: Interface evolu-
tion patterns: Balancing compatibility and extensibility across service life cycles.
In: Proc. of the 24th European Conference on Pattern Languages of Programs.
ACM, New York, NY, USA (2019). https://doi.org/10.1145/3361149.3361164

21. Mazlami, G., Cito, J., Leitner, P.: Extraction of microservices from monolithic
software architectures. In: 2017 IEEE International Conference on Web Services
(ICWS). pp. 524–531 (June 2017). https://doi.org/10.1109/ICWS.2017.61

22. Mens, T., Tourwe, T.: A survey of software refactoring. IEEE
Transactions on Software Engineering 30(2), 126–139 (Feb 2004).
https://doi.org/10.1109/TSE.2004.1265817

23. Munezero, I.J., Mukasa, D., Kanagwa, B., Balikuddembe, J.: Partitioning microser-
vices: A domain engineering approach. In: 2018 IEEE/ACM Symposium on Soft-
ware Engineering in Africa (SEiA). pp. 43–49 (May 2018)

24. Parnas, D.L.: On the criteria to be used in decomposing sys-
tems into modules. Commun. ACM 15(12), 1053–1058 (Dec 1972).
https://doi.org/10.1145/361598.361623

https://eprints.hsr.ch/806/
https://doi.org/10.1109/CSMR.2006.3
https://eprints.hsr.ch/819/
https://eprints.hsr.ch/819/
https://eprints.hsr.ch/784/
https://eprints.hsr.ch/602/
https://doi.org/10.5220/0008910502990306
https://doi.org/10.1145/1176617.1176728
https://doi.org/10.1145/3361149.3361164
https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1109/TSE.2004.1265817
https://doi.org/10.1145/361598.361623


Domain-driven Service Design 21

25. Pautasso, C., Zimmermann, O., Amundsen, M., Lewis, J., Josuttis, N.: Microser-
vices in practice, part 1: Reality check and service design. IEEE Software 34(1),
91–98 (Jan 2017). https://doi.org/10.1109/MS.2017.24

26. Plöd, M.: DDD Context Maps - an enhanced view. https://speakerdeck.com/
mploed/context-maps-an-enhanced-view (2018)

27. Plöd, M.: Hands-on Domain-driven Design - by example. Leanpub (2019)
28. Rademacher, F., Sorgalla, J., Sachweh, S.: Challenges of domain-driven microser-

vice design: A model-driven perspective. IEEE Software 35(3), 36–43 (May 2018).
https://doi.org/10.1109/MS.2018.2141028

29. Shaw, M.: Writing good software engineering research papers: Minitutorial. In:
Proc. of the 25th International Conference on Software Engineering. pp. 726–736.
ICSE ’03, IEEE Computer Society, Washington, DC, USA (2003), http://dl.
acm.org/citation.cfm?id=776816.776925

30. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: Eclipse Modeling
Framework. Eclipse Series, Pearson Education (2008)

31. Tigges, O.: How to break down a domain to bounded contexts?
speakerdeck.com/otigges/how-to-break-down-a-domain-to-bounded-contexts,
[Online; Accessed: 2020-02-14]

32. Tune, N., Millett, S.: Designing Autonomous Teams and Services: Deliver Contin-
uous Business Value Through Organizational Alignment. O’Reilly Media (2017)

33. Vernon, V.: Implementing Domain-Driven Design. Addison-Wesley (2013)
34. Zimmermann, O.: Architectural refactoring for the cloud: decision-

centric view on cloud migration. Computing 99(2), 129–145 (2017).
https://doi.org/10.1007/s00607-016-0520-y, http://rdcu.be/lFW6

NOTICE: This is the author’s version of a work published in
the Springer book series Communications in Computer and Information
Science. The final authenticated version is available online
at https://doi.org/10.1007/978-3-030-64846-6 11.

https://doi.org/10.1109/MS.2017.24
https://speakerdeck.com/mploed/context-maps-an-enhanced-view
https://speakerdeck.com/mploed/context-maps-an-enhanced-view
https://doi.org/10.1109/MS.2018.2141028
http://dl.acm.org/citation.cfm?id=776816.776925
http://dl.acm.org/citation.cfm?id=776816.776925
https://speakerdeck.com/otigges/how-to-break-down-a-domain-to-bounded-contexts
https://doi.org/10.1007/s00607-016-0520-y
http://rdcu.be/lFW6
https://link.springer.com/bookseries/7899
https://link.springer.com/bookseries/7899
https://doi.org/10.1007/978-3-030-64846-6_11

	Domain-driven Service Design

