OST

Eastern Switzerland
University of Applied Sciences

Domain-driven Service Design

Context Modeling, Model Refactoring
and Contract Generation

Stefan Kapferer and Prof. Dr. Olaf Zimmermann

j

SummerSoC 2020, A
September 14, 2020 :DE S
—J

Institute for Software Service Oriented Computing

Agenda

- Motivation
- Strategic Domain-driven Design (DDD)
- Open Source Project: Context Mapper

- Domain-specific Language (DSL)
- Framework Architecture

- Selected Paper Contributions

- Architectural Refactorings (ARs)
- Stepwise Service Decomposition Method

- Short Context Mapper Demo
« Summary and Outlook
- Q&A

INSTITUTE FOR

2 | Domain-driven Service Design © Stefan Kapferer, Olaf Zimmermann, 2020
SOFTWARE

Motivation: Fictitious Insurance Software

Buy? Build? Rent?

et Technology?
L i Vendor? Team?
Pr|nt|ng R T S
B . Subdomain 3 o Risks
i Number and size : 2 . .
: Subdomain

of sub-systems
or services?

Debts / Invoicing Pt e T
Subdomain e
e Insurance [t SO . Pk;)olllaes'
""""""""" - i Data and control u omain
SyStem / Doma"“\‘ _____ i flow direction? :
... Data formats?
...... . . Data duplication and/or ~ Frequency of message
Customer Self-Service ™ | on-demand exchange? ! exchange?
i i Strict/eventual consistency? : .
................ Insurance Products
' e Subdomain < _~~
‘ Customelr Subdomain Design Issue
~. Subdomain : 7
3 | Domain-driven Service Design © Stefan Kapferer, Olaf Zimmermann, 2020 - INSTITUTE FOR
® SOFTWARE

4

Motivation: How to decompose the system? (1/3)

- Implementation as one single system? («Monolith») <5

i Number and size
i of sub-systems
i or services?

Subdomain Risks

Debts / Invoicing

Printing

.................

Subdomain Policies
R Insurance st Subdomain
System / Domain ..
......... Insurance Products
............................. .“.““‘“‘.-‘ “““__,-‘_‘.--‘ :‘“’. Subdomain . Subdoma|n
Customer |~ e e

Subdomain

Domain-driven Service Design

INSTITUTE FOR
SOFTWARE

© Stefan Kapferer, Olaf Zimmermann, 2020

eee

Motivation: How to decompose the system? (2/3)

- Decompose into three subsystems? 4.

Prlntlng <l

i Number and size .
i ofsub-systems L~ -~ .7 Subdomain

or services?

................................
..................................
..............................
..................................

Debts / Invoicing
Subdomain

..................................... Policies
.................. B Subdomain

—.,, ; * Insurance Products “ P
""""""""""""""" e TN Subdomain i " Subdomain :
“| Customer O
“ Subdomain S — : ~
i . Design Issue Composition
5 | Domain-driven Service Design © Stefan Kapferer, Olaf Zimmermann, 2020 - INSTITUTE FOR
* SOFTWARE

Motivation: How to decompose the system? (3/3)

« Or one system per subdomain? T

: - Risks

i Number andsize : * .- .

i ofsub-systems L~ T Subdomain Subdomain
i or services? i _ en

Debts / Invoicing
Subdomain

Policies
Subdomain

Customer Self-Service
Subdomain

Insurance Products e
Subdomain '

~~~~~~

Customer
Subdomain

6 | Domain-driven Service Design © Stefan Kapferer, Olaf Zimmermann, 2020

eee

INSTITUTE FOR
SOFTWARE



Motivation: Project Vision as User Story

As a software architect / want to
model the subsystems and components of my architecture and how they interact
So that

| can evolve the architecture semi-automatically (i.e, supported by model refactorings and
service decomposition heuristics), communicate the architecture, and generate other
representations of the models such as Unified Modeling Language (UML) diagrams and
service API contracts (or even code).

INSTITUTE FOR
SOFTWARE

7 | Domain-driven Service Design © Stefan Kapferer, Olaf Zimmermann, 2020

eee



Strategic Domain-driven Design (DDD)
« A popular answer these days:

Domain-driven Design (DDD)

- Emphasizes need for modeling and communication

- Ubiquitous language (vocabulary) - the domain model
- Tactic DDD

- Decomposes a domain model
- Entities, Value Objects, Services, Repositories

- Grouped into Aggregates linguistic boundary
- Strategic DDD

- Defining boundaries around and between domain models

- Teams, subsystems, components modeled as «Bounded
Contexts»

Image reference: Michael Plod, Aligning organization and architecture with strategic DDD (Slides)

8 | Domain-driven Service Design

© Stefan Kapferer, Olaf Zimmermann, 2020 INSTITUTE FOR

SOFTWARE


https://speakerdeck.com/mploed/aligning-organization-and-architecture-with-strategic-ddd

Bounded Context and Context Mapping

- Bounded Context

- Establishes a boundary within which a particular domain model is valid.

The concepts within a Bounded Context must be defined clearly and distinctively:
«ubiquitous language»?

Abstractions of (sub-) systems and teams.
Realize parts of one or multiple subdomains.
Heuristic: implement one (micro-)service per Bounded Context.3 4

- Context Map

- Define how Bounded Contexts integrate.
. «Information flow»

2 Reference: Eric Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software, Addison-Wesley (2003)
3 Reference: Jan Stenberg, Vaughn Vernon on Microservices and Domain-Driven Design, InfoQ (Link)
* Reference: Nick Tune, Domain-Driven Design: Hidden Lessons from the Big Blue Book, Craft Conf 2019 (Slides)

INSTITUTE FOR
SOFTWARE

9 | Domain-driven Service Design © Stefan Kapferer, Olaf Zimmermann, 2020

eee


https://www.infoq.com/news/2016/07/microservices-ddd-vernon/
http://ntcoding.co.uk/speaking/talks/domain-driven-design-hidden-lessons-from-the-big-blue-book/craft-conf-budapest-may-2019

Context Map for Insurance Example

Printing
Customer Self-Service Context
Context O"/s/p
U 4 U
D U
Customer/Supplier U VQ D
Customer
Management Context Debt Collection
Context
U
D
D Shared Kernel
Risk Management CoNvop\\\l\\ST ACL ed Kerne
Part hi
Context — Policy Management
Context

Legend: Upstream (U), Downstream (D), Open Host Service (OHS), Published Language (PL), Anticorruption-Layer (ACL)

10 | Domain-driven Service Design

© Stefan Kapferer, Olaf Zimmermann, 2020 INSTITUTE FOR

SOFTWARE

eee



Context Mapper: A DSL for Strategic DDD

- Human- and machine-readable language for writing Context Maps®

ContextMap DDDSampleMap {
contains CargoBookingContext, VoyagePlanningContext,
LocationContext

CargoBookingContext [SK]<—>[SK] VoyagePlanningContext
CargoBookingContext [D]<—[U,OHS,PL] LocationContext

LocationContext [U,OHS,PL]—>[D] VoyagePlanningContext
}

BoundedContext CargoBookingContext { /% tactic DDD %/ }
BoundedContext VoyagePlanningContext { /% tactic DDD «/ }
BoundedContext LocationContext { /% tactic DDD «/ }

> Website: contextmapper.org

INSTITUTE FOR
SOFTWARE

11 | Domain-driven Service Design © Stefan Kapferer, Olaf Zimmermann, 2020

eee


https://contextmapper.org/

Context Mapper: Framework Architecture

Service Cutter
(Structured Service
Decomposition)
Generate new service
decompositions ...

12 | Domain-driven Service Design

Discovery Library

F Al
(Reverse Engineering)
/ Discover Context Map

and Bounded Contexts

|

ContextMap DDDSampleMap { Context Mapper
contains CargoBookingContext DSL (CML)

contains VoyagePlanningContext
contains LocationContext

CargoBookingContext [SK]<->[SK] VoyagePlanningContext
CargoBookingContext [D]<-[U,OHS,PL] LocationContext

VoyagePlanningContext [D]<-[U,O0HS,PL] LocationContext

Generators

Generate other representations
of the architectural model

7 \
L &

Service Architecture
Contracts Diagrams

Architectural Refactorings
(ARs)

Refactor decomposition
iteratively ...

© Stefan Kapferer, Olaf Zimmermann, 2020

CONTEXT
MAPPER

eee

INSTITUTE FOR
SOFTWARE



Context Mapper: DSL Benefits

Machine-readable approach allows us to:

Generate different architecture diagrams/visualizations
Generate service (API) contracts

Generate code

Apply model transformations®

- Implement model (architectural) refactorings as model transformations

® Reference: Stefan Kapferer, Model Transformations for DSL Processing, Term Project (2019), eprints.hsr.ch/819

INSTITUTE FOR
SOFTWARE

13 | Domain-driven Service Design © Stefan Kapferer, Olaf Zimmermann, 2020


https://eprints.hsr.ch/819

Scope of SummerSoC 2020 Paper

Domain-driven Service Design 1- SerVice DecompOSition With Strategic Domain-driven

Context Modeling, Model Refactoring and Contract

Design (DDD) patterns

2. Context Mapper (framework): a machine-readable
approach to Strategic DDD

g " .
. DeCOIIIpOSItIOH Criteria
them is challenging. Domain-driven Design (DDD) is a popular approach R .
to identify (micro-)services by modeling so-called Bounded Contexts and
Context Maps. In our previous work, we proposed a Domain-specific Lan- - rC I e C u ra e a C O rI n g S

guage (DSL) and tools that leverage the DDD patterns to support service
modeling and decomposition. The DSL is implemented in Context Map-
per, a tool that allows software architects and system integrators to cre- . .
e Context Maps that are both haman and machine-eadsbl. Hlowever, 5. An incremental method to decompose services
we have not covered the tool architecture, the iterative and incremen- -

tal refinement of such maps, and the transition from DDD pattern-based

models to (micro-)service-oriented architectures yet. In this paper, we in-

troduce the architectural concepts of Context Mapper and seven model (( Ste b Ste ))
refactorings supporting decomposition criteria we distilled from the lit-

erature and own industry experience; they are grouped and serve as part
of a service design elaboration method. We also introduce a novel . .
vico contract generation approach that leverages an emerging Micr 6 S t t t t f D D D d I
Vi Domain Spetic Lnnguae (MDSL). These essnch conslyaion . O€ervice contract generation out o moaeils

are implemented in Context Mapper and validated empirically.

University of Applied Sciences of Eastern Switzerland (HSR FHO),
Oberseestrasse 10, 8640 Rapperswil, Switzerland
{skapfere, ozimmerm}@hsr.ch

Abstract. Service-oriented architectur
much attention in recent years; companies adopt their concepts and sup-
agility, scalability, and maintain- 3

s and microservices have gained

porting technologies in order to increas
ability of their systems. Decomposing an application into multiple inde-

Keywords: Domain-driven Design - Domain-specific Language - Mi-
croservices - Model-driven Software Engineering - Service-oriented Ar-
chitecture - Architectural Refactorings

1 Introduction

Domain-driven Design (DDD) was introduced in a practitioner book in 2003 [8]. -

Tactical DDD patterns such as Aggregate, Entity, Value Object, Factory, and U nfo rtu n atel We ca n n ot cove r al I o u r to Ics
Repository have been used in software engineering to model complex domains

in an object-oriented way since then. While these tactical patterns focus on

the domain model of an application, strategic ones such as Bounded Context - - -
and Context Map are used to establish domain model scopes as well as the I n Is s o p rese n a Io n -

INSTITUTE FOR
SOFTWARE

14 | Domain-driven Service Design © Stefan Kapferer, Olaf Zimmermann, 2020

eee



15

Domain-driven Service Design

Context Modeling, Model Refactoring and Contract
Generation

Stefan Kapferer and Olaf Zimmermann

University of Applied Sciences of Eastern Switzerland (HSR FHO),
Oberseestrasse 10, 8640 Rapperswil, Switzerland
{skapfere, ozimmerm}@hsr.ch

Abstract. Service-oriented architectur
much attention in recent years; compani
porting technologies in order to increase agility, scalability, and maintain-
ability of their systems. Decomposing an application into multiple inde-
pendently deployable, appropriately sized services and then integrating
them is challenging. Domain-driven Design (DDD) is a popular approach
to identify (micro-)services by modeling so-called Bounded Contexts and
Context Maps. In our previous work, we proposed a Domain-specific Lan-
guage (DSL) and tools that leverage the DDD patterns to support service
modeling and decomposition. The DSL is implemented in Context Map-
per, a tool that allows software architects and s
ate Context Maps that are both human- and machine-readable. However,
we have not covered the tool architecture, the iterative and incremen-
tal refinement of such maps, and the transition from DDD pattern-based
models to (micro-)service-oriented architectures yet. In this paper, we in-
troduce the architectural concepts of Context. Mapper and seven model
refactorings supporting decomposition criteria we distilled from the lit-
erature and own industry experience; they are grouped and serve as part
of a service design elaboration method. We also introduce a novel
vice contract generation approach that leverages an emerging Micr
vice Domain-Specific Language (MDSL). These research contributions
are implemented in Context Mapper and validated empirically.

s and microservices have gained
adopt their concepts and sup-

stem integrators to cre-

Keywords: Domain-driven Design - Domain-specific Language - Mi-
Model-driven Software Engineering - Service-oriented Ar-

croservices
chitecture - Architectural Refactorings

1 Introduction

Domain-driven Design (DDD) was introduced in a practitioner book in 2003 [8].
Tactical DDD patterns such as Aggregate, Entity, Value Object, Factory, and
Repository have been used in software engineering to model complex domains
in an object-oriented way since then. While these tactical patterns focus on
the domain model of an application, strategic ones such as Bounded Context
and Context Map are used to establish domain model scopes as well as the

Domain-driven Service Design

Scope of SummerSoC 2020 Paper

1. Service Decomposition with Strategic Domain-driven
Design (DDD) patterns

2. Context Mapper (framework): a machine-readable
approach to Strategic DDD

3. Decomposition Criteria
4. Architectural Refactorings (AR)

5. An incremental method to decompose services
«step by step»

6. Service contract generation out of DDD models

So, let us give you a glimpse into the
incremental refactoring method ...

INSTITUTE FOR
SOFTWARE

© Stefan Kapferer, Olaf Zimmermann, 2020



Architectural Refactorings for Context Map Models

- We distilled «Decomposition Criteria» empirically (see Appendix for more)
. Based on those criteria, we derived «Architectural Refactorings»’ (model transformations):

Decomposition: Composition:
” AR-1: Split Aggregate by Entities AR-6: Merge Aggregates L
O
5 2
@ |AR-2: Split Bounded Context by Use Cases AR-7: Merge Bounded Contexts a®
S
AR-3: Split Bounded Context by Owner AR Description Structure (Example):
: Context: Conways Law's rules
o e r Motivation: Autonomy, clear |
R AR-4: Extract Aggregates by Volatility y responsibilities, high
g g . '\ cohesion, low coupling :
W |AR-5: Extract Aggregates by Cohesion ‘\‘__S_qu_tjp_n _a_[]sj_ _E_f_f_e_c_t_:_(_s_e_e_ _F_I_g_u_r_e_ 42_ S _'

Reference: Neri D., Soldani, J., Zimmermann, O., Brogi, A: Design Principles, Architectural Smells and Refactorings for Microservices.
7 A Multivocal Review. In: SICS Software-Intensive Cyber-Physical Systems (Springer 2019). (PDF)

Reference: Zimmermann, O.: Architectural Refactoring for the Cloud: a Decision-Centric View on Cloud Migration. In: Springer

Computing, 2017, pp 129-145. (PDF)

INSTITUTE FOR
SOFTWARE

16 | Domain-driven Service Design © Stefan Kapferer, Olaf Zimmermann, 2020

eee


https://arxiv.org/pdf/1906.01553
https://www.ifs.hsr.ch/fileadmin/user_upload/customers/ifs.hsr.ch/Home/projekte/ARC-SummerSoCSubmission2015v11.pdf

Context Mapper: Demo

Insurance-Sample-1.cml - context-mapper-examples - Visual Studio Code

File Edit Selection View Go Run Terminal Help

- Short Context Mapper O o o Insurance-Sample-Leml X

- > OPEN EDITORS Src » main l > sun 20 > = Insu d nple-1.cml ﬁ Insur
demonstration: - CONTEXT-MAPPER-EXAMPLES

> context-mapper-example Con tMap InsuranceContextMap {

> ddd-sample /P SYSTEM LANDSCAPE

- Editor support

insurancefexample

° One arChiteCturaI 4 R contains CustomerManagementContext

contains CustomerSelfServiceContext
contains PrintingContext

refactoring (AR) et

contains RiskManagementContext
ontains DebtCollection

H 4 CustomerSeLfServiceContext| [D,C]<-[U,S] CustomerManagementContext
n ’ ’
L Down Ioad Iln ks [] exposedAggregates = Customers

.gitignore }

® V|Sua| StUdIO COde ‘Gitpod Dockerfile CustomerManagementContext [D,ACL]<-[U,0HS,PL] PrintingContext {

.gitpod.yml -
GRPOCY impl tationTechno “SOAP"

- Online (Browser) IDE

travis.yml
. (& build.gradle
° ECIIpse > OUTLINE PrintingContext [U,O0HS,PL]->[D,ACL] PolicyManagementContext {

> TIMELINE implementationTechnolc

S NPM SCRIPTS exposedAggregates = Printing

> JAVA PROJECTS
1 \
> MAVEN RiskManagementContext [P]<->[P] PolicyManagementContext {

§ masterr O ®0A32®50 Ln 16, Col31 TabSize:4 UTF-8 LF Context Mapper DSL &

INSTITUTE FOR
SOFTWARE

17 | Domain-driven Service Design © Stefan Kapferer, Olaf Zimmermann, 2020

eee


https://marketplace.visualstudio.com/items?itemName=contextmapper.context-mapper-vscode-extension
https://contextmapper.org/docs/online-ide/
https://marketplace.eclipse.org/content/context-mapper/

Stepwise Service Decomposition Method

Printin:
Number and size Subdomain Risks
sssssssssssssss Subdomain

sssssssss

Subdomains
with Entities

Subdomain

Policies

Insurance .
Subdomain

System / Domain

Customer Self-Service
Subdomain

Domain
Analysis

Derive initial set of BCs
(from Stories, Use Cases, Event Storming)

v
o a) Decompose by use cases (AR-2) .
Q g Bounded b) Decompose by organization / teams (AR-3) ) %
= C) Decompose by VOIatlIlty (AR-4) Management Context Debt Collection
g Q Contexts (BCs) d) Decompose by other QAs / NFRs (AR-5) & context
U) . : / ACL\
Define Aggregates for each BC e) Merge BCs: AR-7 to invert a) - d) Risk “ézﬂtfg;ime”t e Mn\m
/ Context
v Aggregates "
= . o a) Decompose by Entities (AR-1
7] g (with Entities, Value ) P y ities )
ca Objects, Services, b) Merge Aggregates: AR-6 to invert a)
Domain Events)
18 | Domain-driven Service Design © Stefan Kapferer, Olaf Zimmermann, 2020 : INSTITUTE FOR
. SOFTWARE



Summary and Outlook

- DDD is a trending approach for service decomposition
- Context Mapper: a machine-readable approach for DDD models
- Supports systematic and stepwise decomposition through architectural refactorings
- Approach allows us to generate architecture diagrams and other representations of models:
- PlantUML: component and class diagrams
- Graphical Context Maps
- Service contracts (MDSL)
- Code: Spring Boot applications via JHipster
- Future enhancements:

- Generate code for test automation (Test-driven Development)

- More discovery (reverse engineering) strategies
- Feedback and ideas for improvements are always welcome!

INSTITUTE FOR
SOFTWARE

eee

19 | Domain-driven Service Design © Stefan Kapferer, Olaf Zimmermann, 2020



More Information and Links

- Presentation

- Download this slides and example model: stefan.kapferer.ch/SummerSoC2020
- Context Mapper

. contextmapper.org

— Visual Studio Code plugin
— Eclipse plugin
— Online IDE via Gitpod
- All open source: github.com/ContextMapper

- Live Demo of Online IDE: contextmapper.org/demo
- Example and case study models: github.com/ContextMapper/context-mapper-examples

- Previous papers and presentations:
. contextmapper.org/background-and-publications

INSTITUTE FOR
SOFTWARE

20 | Domain-driven Service Design © Stefan Kapferer, Olaf Zimmermann, 2020


https://stefan.kapferer.ch/SummerSoC2020
https://contextmapper.org/
https://github.com/ContextMapper/
http://demo.contextmapper.org/
https://github.com/ContextMapper/context-mapper-examples
https://contextmapper.org/background-and-publications/

Q&A

Thank you very much for your attention.

Let's move on to Q&A and discussion...

INSTITUTE FOR
SOFTWARE

21 | Domain-driven Service Design © Stefan Kapferer, Olaf Zimmermann, 2020

eee



Appendix

INSTITUTE FOR
SOFTWARE

22 | Domain-driven Service Design © Stefan Kapferer, Olaf Zimmermann, 2020



Bounded Context Identification

Which criteria can we use to decompose our domain?

o)
X

INSTITUTE FOR
SOFTWARE

23 | Domain-driven Service Design © Stefan Kapferer, Olaf Zimmermann, 2020

eee



Decomposition Criteria

« Some criteria typically mentioned by practitioners and DDD experts:

- Use Cases

- Language and domain expert boundaries

- Business process steps

- Business capabilities

- Data flow

- Ownership and teams (Conways Law)

- Non-functional requirements (NFRs) such as security, availability, etc.

INSTITUTE FOR
SOFTWARE

24 | Domain-driven Service Design © Stefan Kapferer, Olaf Zimmermann, 2020

eee



Decomposition Criteria

- DDD experts and practitioners that provide criteria and heuristics:

- M. Plod: Hands-on Domain-driven Design - by Example (Leanpub)
- N. Tune and S. Millett: Designing Autonomous Teams and Services: Deliver Continuous

Business Value Through Organizational Alignment.
- O. Tigges: How to break down a Domain to Bounded Contexts
(speakerdeck.com/otigges/how-to-break-down-a-domain-to-bounded-contexts)
- A. Brandolini: Strategic Domain Driven Design with Context Mapping

(infog.com/articles/ddd-contextmapping/)
- A catalog of coupling criteria researched from literature and industry experience:

. github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria

INSTITUTE FOR
SOFTWARE

eee

25 | Domain-driven Service Design © Stefan Kapferer, Olaf Zimmermann, 2020


https://speakerdeck.com/otigges/how-to-break-down-a-domain-to-bounded-contexts
https://www.infoq.com/articles/ddd-contextmapping/
https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria

From DDD Models towards Service Implementation

Once a Context Map and the domain models inside the Bounded Contexts are created,
another question arises:

How to implement the corresponding services (DDD Bounded Contexts)?

INSTITUTE FOR
SOFTWARE

26 | Domain-driven Service Design © Stefan Kapferer, Olaf Zimmermann, 2020

eee



From DDD Models towards Service Implementation

« Microservice API Patterns (MAP) answer questions regarding how (micro-)services shall be
implemented.

- microservice-api-patterns.org

- Microservice Domain-Specific Language (MDSL) language implements API Description pattern

of MAP.
- We developed a mapping between the meta models of DDD Context Maps and MDSL API

descriptions.
- And: a generator in Context Mapper that generates MDSL service contracts out of CML Context

Maps.

INSTITUTE FOR
SOFTWARE

eee

27 | Domain-driven Service Design © Stefan Kapferer, Olaf Zimmermann, 2020


https://microservice-api-patterns.org/

Microservice Domain-specific Language (MDSL)

@ Microservice Domain-Spe: X +

< C @& microservice-api-patterns.github.io

View on GitHub @

Microservice DSL (MDSL)

A Domain-Specific Language (DSL) to specify (micro-)service
contracts, their data representations and API endpoints.

TL;DR

Microservice Domain-Specific Language (MDSL) abstracts from technology-specific
interface description languages such as Swagger, WSDL and Protocol Buffers. Its current
version is 4.0.

Quick links:

« Documentation pages (GitHub pages): Tutorial, quick reference, example
« Language and tools repository (GitHub): Grammar, examples
« Tools: Overview, CLI, update site for editor (Eclipse plugin)

Getting Started with MDSL

MDSL supports the API Description pattern from Microservice AP| Patterns (MAP). It picks
up MAP concepts such as API endpoint, operation, client and provider, and features

microservice-api-patterns.github.io/MDSL-Specification

INSTITUTE FOR
SOFTWARE

28 | Domain-driven Service Design © Stefan Kapferer, Olaf Zimmermann, 2020


https://microservice-api-patterns.github.io/MDSL-Specification/

29

MDSL Service Contract Sample (1)

API description CustomerCoreAPI // a.k.a. service contract
usage context PUBLIC API for BACKEND INTEGRATION
and FRONTEND INTEGRATION

data type Customer {
"firstname" :D<string>, "lastname":D<string>,
"sin":SocialInsuranceNumber, "addresses":Addressx

}
data type SociallInsuranceNumber { "sin":D<string> }

data type Address {
"street":D<string>, "postalCode":D<int>, "city":D<string>
}

data type AddressId P // placeholder, AddressId not specified

in detail

data type createAddressParameter {
"customer" :Customer, "address":Address

}

Domain-driven Service Design © Stefan Kapferer, Olaf Zimmermann, 2020

INSTITUTE FOR
SOFTWARE



30

MDSL Service Contract Sample (2)

endpoint type CustomersAggregate
exposes
operation createAddress
expecting
payload createAddressParameter
delivering
payload AddressId
operation changeAddress
expecting
payload Address
delivering
payload D<bool>

API provider CustomerCoreProvider
offers CustomersAggregate
at endpoint location "http://localhost:8000"
via protocol "RESTful HTTP"

API client CustomerSelfServiceClient consumes
CustomersAggregate

API client CustomerManagementClient consumes CustomersAggregate

API client PolicyManagementClient consumes CustomersAggregate

Domain-driven Service Design © Stefan Kapferer, Olaf Zimmermann, 2020

INSTITUTE FOR
SOFTWARE



31

Context Mapper DSL (CML) to MDSL Mapping

class MAP to DDD Pattern Mapping /

MAP: APl Domain Abstractions and their Relations (extract)

Relationship

API Client has ) Operation ="
describes =
API API Contract
/ .
f describes
API Provider ! has B APl Endpoint
T
1
LELER) \ T -
LH «create» \\ «create» ,’ /r’ «create» «create
- ~ -~ . . - Jr . H ///
R Dpﬁmam—drwen Design (DDD) Concepts realized in Context Mappgl;/
~Ioes |
Context Map shows B Bounded Context Aggregate has B> "Root" Entity
| ,
i
I
shows ! contains
y : \J
I
)
Upstream- - is involved in multiple ! e Method |
Downstream «create» |

—_—————— 1)

»

L __

Domain-driven Service Design

© Stefan Kapferer, Olaf Zimmermann, 2020

eee

INSTITUTE FOR
SOFTWARE



32

Software/Service/API Design Practice Repository (DPR)

« DPR (pronounced «deeper») design practice repository by Olaf Zimmermann

features Context Mapper:

Domain-driven Service Design

GitHub - socadk/design-pr X =+

< C @ github.com

Method Engineering

architecture design™:

Our metamodel is an adoption of the related work chapter in Olaf Zimmermann's PhD
thesis report "An architectural decision modeling framework for service-oriented

Software Engineering (SE) Method (Asset)

Roles
Phases, Activities, Tasks

Process

L Notati Artifact Formats
otation Viewpoint Schema

use I format ;‘

Techni Content
ECHINIGUES (Reference, Sample)

Project Usage of SE Method

Project Performing Resources
Plan Work Breakdown Structure

comprise l

Project Documentation

github.com/socadk/.../SOADMethodMetamodel....

This terminology maps to that of other method engineers like this:

github.com/socadk/design-practice-repository

© Stefan Kapferer, Olaf Zimmermann, 2020

INSTITUTE FOR
SOFTWARE


https://github.com/socadk/design-practice-repository

