
Domain-driven Service Design
Context Modeling, Model Refactoring
and Contract Generation

Stefan Kapferer and Prof. Dr. Olaf Zimmermann

SummerSoC 2020,
September 14, 2020

Institute for Software



Motivation
Strategic Domain-driven Design (DDD)
Open Source Project: Context Mapper

Domain-specific Language (DSL)
Framework Architecture

Selected Paper Contributions
Architectural Refactorings (ARs)
Stepwise Service Decomposition Method

Short Context Mapper Demo
Summary and Outlook
Q&A

Agenda

Domain-driven Service Design2 © Stefan Kapferer, Olaf Zimmermann, 2020



Motivation: Fictitious Insurance Software

Domain-driven Service Design3 © Stefan Kapferer, Olaf Zimmermann, 2020



Implementation as one single system? («Monolith»)

Motivation: How to decompose the system? (1/3)

Domain-driven Service Design4 © Stefan Kapferer, Olaf Zimmermann, 2020



Decompose into three subsystems?

Motivation: How to decompose the system? (2/3)

Domain-driven Service Design5 © Stefan Kapferer, Olaf Zimmermann, 2020



Or one system per subdomain?

Motivation: How to decompose the system? (3/3)

Domain-driven Service Design6 © Stefan Kapferer, Olaf Zimmermann, 2020



As a software architect I want to

model the subsystems and components of my architecture and how they interact

so that

I can evolve the architecture semi-automatically (i.e, supported by model refactorings and
service decomposition heuristics), communicate the architecture, and generate other
representations of the models such as Unified Modeling Language (UML) diagrams and

service API contracts (or even code).

Motivation: Project Vision as User Story

Domain-driven Service Design7 © Stefan Kapferer, Olaf Zimmermann, 2020



A popular answer these days:
Domain-driven Design (DDD)
Emphasizes need for modeling and communication

Ubiquitous language (vocabulary) - the domain model
Tactic DDD

Decomposes a domain model
Entities, Value Objects, Services, Repositories
Grouped into Aggregates

Strategic DDD
Defining boundaries around and between domain models
Teams, subsystems, components modeled as «Bounded
Contexts»

Image reference: Michael Plöd, Aligning organization and architecture with strategic DDD (Slides)

Strategic Domain-driven Design (DDD)

Domain-driven Service Design8 © Stefan Kapferer, Olaf Zimmermann, 2020

https://speakerdeck.com/mploed/aligning-organization-and-architecture-with-strategic-ddd


Bounded Context
Establishes a boundary within which a particular domain model is valid.
The concepts within a Bounded Context must be defined clearly and distinctively:
«ubiquitous language»2

Abstractions of (sub-) systems and teams.
Realize parts of one or multiple subdomains.
Heuristic: implement one (micro-)service per Bounded Context.3 4

Context Map
Define how Bounded Contexts integrate.
«Information flow»

2 Reference: Eric Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software, Addison-Wesley (2003)
3 Reference: Jan Stenberg, Vaughn Vernon on Microservices and Domain-Driven Design, InfoQ (Link)
4 Reference: Nick Tune, Domain-Driven Design: Hidden Lessons from the Big Blue Book, Craft Conf 2019 (Slides)

Bounded Context and Context Mapping

Domain-driven Service Design9 © Stefan Kapferer, Olaf Zimmermann, 2020

https://www.infoq.com/news/2016/07/microservices-ddd-vernon/
http://ntcoding.co.uk/speaking/talks/domain-driven-design-hidden-lessons-from-the-big-blue-book/craft-conf-budapest-may-2019


Legend: Upstream (U), Downstream (D), Open Host Service (OHS), Published Language (PL), Anticorruption-Layer (ACL)

Context Map for Insurance Example

Domain-driven Service Design10 © Stefan Kapferer, Olaf Zimmermann, 2020



Human- and machine-readable language for writing Context Maps5

ContextMap DDDSampleMap {
contains CargoBookingContext, VoyagePlanningContext,
LocationContext

CargoBookingContext [SK]<−>[SK] VoyagePlanningContext

CargoBookingContext [D]<−[U,OHS,PL] LocationContext

LocationContext [U,OHS,PL]−>[D] VoyagePlanningContext
}

BoundedContext CargoBookingContext { /* tactic DDD */ }
BoundedContext VoyagePlanningContext { /* tactic DDD */ }
BoundedContext LocationContext { /* tactic DDD */ }

5 Website: contextmapper.org

Context Mapper: A DSL for Strategic DDD

Domain-driven Service Design11 © Stefan Kapferer, Olaf Zimmermann, 2020

https://contextmapper.org/


Context Mapper: Framework Architecture

Domain-driven Service Design12 © Stefan Kapferer, Olaf Zimmermann, 2020



Machine-readable approach allows us to:

Generate different architecture diagrams/visualizations
Generate service (API) contracts
Generate code
Apply model transformations6

Implement model (architectural) refactorings as model transformations

6 Reference: Stefan Kapferer, Model Transformations for DSL Processing, Term Project (2019), eprints.hsr.ch/819

Context Mapper: DSL Benefits

Domain-driven Service Design13 © Stefan Kapferer, Olaf Zimmermann, 2020

https://eprints.hsr.ch/819


1. Service Decomposition with Strategic Domain-driven
Design (DDD) patterns

2. Context Mapper (framework): a machine-readable
approach to Strategic DDD

3. Decomposition Criteria
4. Architectural Refactorings (AR)
5. An incremental method to decompose services

«step by step»
6. Service contract generation out of DDD models

Unfortunately we cannot cover all our topics
in this short presentation.

Scope of SummerSoC 2020 Paper

Domain-driven Service Design14 © Stefan Kapferer, Olaf Zimmermann, 2020



1. Service Decomposition with Strategic Domain-driven
Design (DDD) patterns

2. Context Mapper (framework): a machine-readable
approach to Strategic DDD

3. Decomposition Criteria
4. Architectural Refactorings (AR)
5. An incremental method to decompose services

«step by step»
6. Service contract generation out of DDD models

So, let us give you a glimpse into the
incremental refactoring method ...

Scope of SummerSoC 2020 Paper

Domain-driven Service Design15 © Stefan Kapferer, Olaf Zimmermann, 2020



We distilled «Decomposition Criteria» empirically (see Appendix for more)
Based on those criteria, we derived «Architectural Refactorings»7 (model transformations):

7
Reference: Neri D., Soldani, J., Zimmermann, O., Brogi, A: Design Principles, Architectural Smells and Refactorings for Microservices.
A Multivocal Review. In: SICS Software-Intensive Cyber-Physical Systems (Springer 2019). (PDF)
Reference: Zimmermann, O.: Architectural Refactoring for the Cloud: a Decision-Centric View on Cloud Migration. In: Springer
Computing, 2017, pp 129–145. (PDF)

Architectural Refactorings for Context Map Models

Domain-driven Service Design16 © Stefan Kapferer, Olaf Zimmermann, 2020

https://arxiv.org/pdf/1906.01553
https://www.ifs.hsr.ch/fileadmin/user_upload/customers/ifs.hsr.ch/Home/projekte/ARC-SummerSoCSubmission2015v11.pdf


Short Context Mapper
demonstration:

Editor support
One architectural
refactoring (AR)

Download links:
Visual Studio Code
Online (Browser) IDE
Eclipse

Context Mapper: Demo

Domain-driven Service Design17 © Stefan Kapferer, Olaf Zimmermann, 2020

https://marketplace.visualstudio.com/items?itemName=contextmapper.context-mapper-vscode-extension
https://contextmapper.org/docs/online-ide/
https://marketplace.eclipse.org/content/context-mapper/


Stepwise Service Decomposition Method

Domain-driven Service Design18 © Stefan Kapferer, Olaf Zimmermann, 2020



DDD is a trending approach for service decomposition
Context Mapper: a machine-readable approach for DDD models
Supports systematic and stepwise decomposition through architectural refactorings
Approach allows us to generate architecture diagrams and other representations of models:

PlantUML: component and class diagrams
Graphical Context Maps
Service contracts (MDSL)
Code: Spring Boot applications via JHipster

Future enhancements:
Generate code for test automation (Test-driven Development)
More discovery (reverse engineering) strategies
Feedback and ideas for improvements are always welcome!

Summary and Outlook

Domain-driven Service Design19 © Stefan Kapferer, Olaf Zimmermann, 2020



Presentation
Download this slides and example model: stefan.kapferer.ch/SummerSoC2020

Context Mapper
contextmapper.org
– Visual Studio Code plugin
– Eclipse plugin
– Online IDE via Gitpod
All open source: github.com/ContextMapper
Live Demo of Online IDE: contextmapper.org/demo
Example and case study models: github.com/ContextMapper/context-mapper-examples

Previous papers and presentations:
contextmapper.org/background-and-publications

More Information and Links

Domain-driven Service Design20 © Stefan Kapferer, Olaf Zimmermann, 2020

https://stefan.kapferer.ch/SummerSoC2020
https://contextmapper.org/
https://github.com/ContextMapper/
http://demo.contextmapper.org/
https://github.com/ContextMapper/context-mapper-examples
https://contextmapper.org/background-and-publications/


Thank you very much for your attention.

Let's move on to Q&A and discussion...

Q&A

Domain-driven Service Design21 © Stefan Kapferer, Olaf Zimmermann, 2020



Appendix

Domain-driven Service Design22 © Stefan Kapferer, Olaf Zimmermann, 2020



Which criteria can we use to decompose our domain?

Bounded Context Identification

Domain-driven Service Design23 © Stefan Kapferer, Olaf Zimmermann, 2020



Some criteria typically mentioned by practitioners and DDD experts:
Use Cases
Language and domain expert boundaries
Business process steps
Business capabilities
Data flow
Ownership and teams (Conways Law)
Non-functional requirements (NFRs) such as security, availability, etc.

Decomposition Criteria

Domain-driven Service Design24 © Stefan Kapferer, Olaf Zimmermann, 2020



DDD experts and practitioners that provide criteria and heuristics:
M. Plöd: Hands-on Domain-driven Design - by Example (Leanpub)
N. Tune and S. Millett: Designing Autonomous Teams and Services: Deliver Continuous
Business Value Through Organizational Alignment.
O. Tigges: How to break down a Domain to Bounded Contexts
(speakerdeck.com/otigges/how-to-break-down-a-domain-to-bounded-contexts)
A. Brandolini: Strategic Domain Driven Design with Context Mapping
(infoq.com/articles/ddd-contextmapping/)

A catalog of coupling criteria researched from literature and industry experience:
github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria

Decomposition Criteria

Domain-driven Service Design25 © Stefan Kapferer, Olaf Zimmermann, 2020

https://speakerdeck.com/otigges/how-to-break-down-a-domain-to-bounded-contexts
https://www.infoq.com/articles/ddd-contextmapping/
https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria


Once a Context Map and the domain models inside the Bounded Contexts are created,
another question arises:

How to implement the corresponding services (DDD Bounded Contexts)?

From DDD Models towards Service Implementation

Domain-driven Service Design26 © Stefan Kapferer, Olaf Zimmermann, 2020



Microservice API Patterns (MAP) answer questions regarding how (micro-)services shall be
implemented.

microservice-api-patterns.org
Microservice Domain-Specific Language (MDSL) language implements API Description pattern
of MAP.
We developed a mapping between the meta models of DDD Context Maps and MDSL API
descriptions.
And: a generator in Context Mapper that generates MDSL service contracts out of CML Context
Maps.

From DDD Models towards Service Implementation

Domain-driven Service Design27 © Stefan Kapferer, Olaf Zimmermann, 2020

https://microservice-api-patterns.org/


microservice-api-patterns.github.io/MDSL-Specification

Microservice Domain-specific Language (MDSL)

Domain-driven Service Design28 © Stefan Kapferer, Olaf Zimmermann, 2020

https://microservice-api-patterns.github.io/MDSL-Specification/


API description CustomerCoreAPI // a.k.a. service contract
usage context PUBLIC_API for BACKEND_INTEGRATION

and FRONTEND_INTEGRATION

data type Customer {
"firstname":D<string>, "lastname":D<string>,
"sin":SocialInsuranceNumber, "addresses":Address*

}

data type SocialInsuranceNumber { "sin":D<string> }

data type Address {
"street":D<string>, "postalCode":D<int>, "city":D<string>

}

data type AddressId P // placeholder, AddressId not specified
in detail

data type createAddressParameter {
"customer":Customer, "address":Address

}

MDSL Service Contract Sample (1)

Domain-driven Service Design29 © Stefan Kapferer, Olaf Zimmermann, 2020



endpoint type CustomersAggregate
exposes

operation createAddress
expecting

payload createAddressParameter
delivering

payload AddressId
operation changeAddress

expecting
payload Address

delivering
payload D<bool>

API provider CustomerCoreProvider
offers CustomersAggregate
at endpoint location "http://localhost:8000"

via protocol "RESTful HTTP"

API client CustomerSelfServiceClient consumes
CustomersAggregate

API client CustomerManagementClient consumes CustomersAggregate
API client PolicyManagementClient consumes CustomersAggregate

MDSL Service Contract Sample (2)

Domain-driven Service Design30 © Stefan Kapferer, Olaf Zimmermann, 2020



Figure 1: Mapping Strategy: Strategic DDD to MAP API Description

Context Mapper DSL (CML) to MDSL Mapping

Domain-driven Service Design31 © Stefan Kapferer, Olaf Zimmermann, 2020



DPR (pronounced «deeper») design practice repository by Olaf Zimmermann
features Context Mapper:

github.com/socadk/design-practice-repository

Software/Service/API Design Practice Repository (DPR)

Domain-driven Service Design32 © Stefan Kapferer, Olaf Zimmermann, 2020

https://github.com/socadk/design-practice-repository

