Stefan
Kapferer

Student
Examiner
Subject Area

Stefan Kapferer
Prof. Dr. Olaf Zimmermann
Software and Systems

Service Decomposition as a Series of Architectural Refactorings

Selected Decomposition Criteria:

Derived Architectural Refactorings:

|DC-1: Business entities (which belong together)

|—>{AR-1: Split Aggregate by Entities ]

[Dc-2: Use Cases

}—»[AR-2: Spiit Bounded Context by Use Cases |

|Dc-3: Business areas & development teams

}—>{AR-3: Spiit Bounded Context by Owner |

[DC-7: Likelihood for change (volatility)

}—»[AR-a: Extract Aggregates by Volatility

[DC-18-12}: Generalized non-functional requirement |—»{AR-5: Extract Aggregates by Cohesion

]
]
AR-6: Merge Aggregates ]
]

YAR-7: Merge Bounded Contexts

Architectural Refactorings (ARs) from Decomposition Criteria (DC)
compiled from literature and own experience.

Own presentment

Operation:
Split Subject Extract parts Merge Subjects
from Subject
& AR-1: Split Al Merge
& |Aggregate by Aggregates
2 Entities
<)
=
<
o
v
]
)
3 AR-2: Split AR-4: Extract AR-7: Merge
“ Bounded Aggregates Bounded
g Context by by Volatility Contexts
L3 Use Cases
2e AR-5: Extract
3 8 AR-3: Split Aggregates
@ Bounded by Cohesion
Context by
Owner

The ARs allow to decompose

Own presentment

(split and extract) and compose

(merge) the DDD bounded contexts and aggregates.

Fie Edit Navigate Search Project Run Window Help
- ioiniwo- v-0-a-a-isc s

*Package Explorer s eamplesinput.cm &

0 c
PP ol 1 type = APPLICATION

T responsibilities = "Ad
hitecturabrefactorings | ;oY cpentationTechnolo

» & AR-1-Split-Aggregate-b | 1
6 Aggregate Custonerfron
ouner = Custonerfr

Entity CustonerAdd
aggregateRoot

 example-output.cml
READMEmd

- UserAccount
* Address chan

» o AR-4-Extract-Aggregate g

+ AR5 Extract-Aggregate
+ 0 AR-6-Merge-Aggregtes
+ 2 AR-7-Merge-Bounded-C| 2
README.md 5

+ s did-sample
+ s insurance-example
% JRE System Library

)
Aggregate Acounts {
ouner = Custonersa
aggregateRoo

string usernan
~Customer acc
)

= Problems =« Javadoc & Declaratic

Oitems
+osrc-gen

= build gradie

e —— - ¢

ation which allows the customer to log

Open Declaration
Open Generated File
Qui

Copy Qualified Name
Paste

RS Context Mapper Refactor + _ Split Bounded Context by Owner (Team)

st Rename Element

Extract Aggregates by Volatilty
Validate
Quick Fix
Source

Extract Aggregates by Cohesion
Merge Bounded Contexts

o o 5/ Gradle Executions
Add to Snippets.

4 Coverage As

o RunAs

© nety

The ARs have been implemented as Code Refactorings for the
Context Mapper DSL (CML) and integrated into the Eclipse IDE.

Own presentment

HSR

HOCHSCHULE FUR TECHNIK

RAPPERSWIL

FHO Fachhochschule Ostschweiz

Introduction: Decomposing a system into modules or services always has been a
hard design problem. With the current trend towards microservices, this issue has
become even more relevant and challenging. Domain-driven Design (DDD) with its
Bounded Contexts provides one popular technique to decompose a domain into
multiple parts. The open source tool Context Mapper, developed in our previous term
project, offers a Domain-specific Language (DSL) for the strategic DDD patterns.
DSL and supporting tools assist architects in the process of finding service
decompositions. Context Mapper has already been used in practice projects, which
led to suggestions how to improve the DSL to further increase its usability. Moreover,
Context Mapper at present does not offer any transformations or refactoring tools to
improve and evolve the DDD models. Finally, our previous work only gives very basic
advice on how to implement systems that have been modeled in Context Mapper in a
(micro-)service-oriented architectural style.

Result: This work presents a series of Architectural Refactorings (ARs) for strategic
DDD models based on corresponding Decoupling Criteria (DC) collected from
literature and personal experience. These refactorings allow a software architect to
(de-)compose a domain iteratively. Aiming for a broad DC coverage, a set of seven
ARs has been implemented. These ARs are realized as code refactorings for the
Context Mapper DSL (CML) language and support splitting, extracting and merging
Bounded Contexts and/or Aggregates. Therefore, DSL users are able to refactor their
CML models within the provided Eclipse plugin. A new service contract generator
offers assistance how to implement the DDD models in an (micro-)service-oriented
architecture. The resulting contracts are written in the Microservices Domain Specific
Language (MDSL), another emerging DSL for specifying service contracts.

Conclusion: The provided DSL with its seven ARs, implemented as model
transformations, support evolving DDD-based models in an iterative way. The
conducted validation activities support our hypothesis that software architects can
benefit from such an approach and tool. Action research has been applied to improve
Context Mapper in each iteration of the prototypical implementation. Basic case
studies conducted on real world projects in the industry indicated the usefulness and
effectiveness of the modeling language. More advanced validation activities still have
to be conducted to analyze and demonstrate the practicability of the ARs.

Projektarbeiten 2019 = Information and Communication Technologies



