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MotivationI

When does the need arise to migrate Monoliths to Microservices?

What is DDD and why should it be used in Microservice design?



Why migrate to Microservices? 

1

Monoliths tend to be harder to manage as size and complexity grows

● Increased maintainability cost

● Lack of scalability for Cloud deployment

● Hinders agile development



Why migrate to Microservices? 

Modular structure with 
strong boundaries 
between services.

Speed up production 
with independent 

agile development.

Different scalability 
options with service 

tailored infrastructures. 
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Why use Domain-Driven Design? 

Design software with a 
focus on the business 

domain.

Use tactical and strategic 
design patterns to model 

complex domains.
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Problem StatementII
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Approach
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Mono2Micro

Modular and extensible for 
the identification of 

microservices in monolith 
systems

Focuses on identifying 
transactional contexts in

the monolithic code, based 
on entity accesses

Context Mapper

Contains a robust DSL for 
representing DDD concepts, 

called CML

Provides many peripheral 
modules, which are designed 

to facilitate architects in 
refactoring activities



Research Questions
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RQ1: How can current approaches to the identification of 
microservices in monolith systems be extended to include DDD.

RQ2: Can the results of a candidate decomposition based on entity 
accesses be represented in terms of DDD?

RQ3: Can an architect benefit from the use of a tool that integrates 
DDD when analyzing and working on a candidate decomposition?



Solution ArchitectureIII
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Mono2Micro - Pipeline Architecture
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Mono2Micro - Pipeline Architecture
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Context Mapper - Hub and Spoke Architecture
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Context Mapper - Hub and Spoke Architecture

17
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Library
CML



Context Mapper - Hub and Spoke Architecture
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Context Mapper - Hub and Spoke Architecture
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Integration Strategy in a Context Map Diagram
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Mono2Micro Pipeline Extension
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Mono2Micro Pipeline Extension
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Mapping Strategy
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Represent a set of 
entities grouped by 
similarity criteria

Represent domain 
classes in the source 
code

Represent a sequence of 
read/write accesses to 
entities in one or more 
clusters

Entities

A decomposition can be represented by three main concepts:

Clusters Functionalities



Mapping Strategy
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Mapping Strategy
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Mono2Micro Pipeline Extension
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Case Study with Quizzes-Tutor
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Case Study with Quizzes-Tutor
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Case Study with Quizzes-Tutor
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Answers to Research Questions
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RQ1: By following and respecting both tools models, and utilizing the 
Discovery Library module as the integration point.

RQ2: By defining a decomposition in Mono2Micro and establishing a 
mapping between the concepts to DDD patterns in CML.

RQ3: An architect benefits by having a complete semi-automatic 
pipeline to model decompositions in a DDD environment.
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Conclusions
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• Almost no migration tools incorporate DDD editing.

• Integration of Mono2Micro and Context Mapper as a 
solution.

• Defining a mapping of concepts between tools so 
that DDD can be used.



Contributions

• A monolith decomposition tool based on DDD modeling

• A new data collector on the side of Mono2Micro

• A new contract between Mono2Micro and Context Mapper

• New Mono2Micro decomposition discovery strategies

• New syntax rules in CML on the side of Context Mapper
35



Questions & Discussion
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