
11 September 2024

Domain-Driven Design Representation of
Monolith Candidate Decompositions
Miguel Levezinho - INESC-ID, University of Lisbon Instituto Superior Técnico
Stefan Kapferer - OST Eastern Switzerland University of Applied Sciences
Olaf Zimmermann - OST Eastern Switzerland University of Applied Sciences
António Rito Silva - INESC-ID, University of Lisbon Instituto Superior Técnico

Motivation

Problem Statement

Solution Architecture

Evaluation

Conclusions

I

II

III

IV

V

1

4

7

28

33

Table of
Contents

MotivationI

When does the need arise to migrate Monoliths to Microservices?

What is DDD and why should it be used in Microservice design?

Why migrate to Microservices?

1

Monoliths tend to be harder to manage as size and complexity grows

● Increased maintainability cost

● Lack of scalability for Cloud deployment

● Hinders agile development

Why migrate to Microservices?

Modular structure with
strong boundaries
between services.

Speed up production
with independent

agile development.

Different scalability
options with service

tailored infrastructures.

2

Why use Domain-Driven Design?

Design software with a
focus on the business

domain.

Use tactical and strategic
design patterns to model

complex domains.

3

Problem StatementII

4

Approach

5

Mono2Micro

Modular and extensible for
the identification of

microservices in monolith
systems

Focuses on identifying
transactional contexts in

the monolithic code, based
on entity accesses

Context Mapper

Contains a robust DSL for
representing DDD concepts,

called CML

Provides many peripheral
modules, which are designed

to facilitate architects in
refactoring activities

Research Questions

6

RQ1: How can current approaches to the identification of
microservices in monolith systems be extended to include DDD.

RQ2: Can the results of a candidate decomposition based on entity
accesses be represented in terms of DDD?

RQ3: Can an architect benefit from the use of a tool that integrates
DDD when analyzing and working on a candidate decomposition?

Solution ArchitectureIII

7

Mono2Micro - Pipeline Architecture

8

Collection Decomposition Quality
Assessment

Visualization

Mono2Micro - Pipeline Architecture

9
Editing

Collection Decomposition Quality
Assessment

Visualization

Mono2Micro - Pipeline Architecture

10
Editing

Collection Decomposition Quality
Assessment

Visualization

Mono2Micro - Pipeline Architecture

11
Editing

Collection Decomposition Quality
Assessment

Visualization

Mono2Micro - Pipeline Architecture

12
Editing

Collection Decomposition Quality
Assessment

Visualization

Mono2Micro - Pipeline Architecture

13
Editing

Collection Decomposition Quality
Assessment

Visualization

Mono2Micro - Pipeline Architecture

14
Editing

Mono2Micro - Pipeline Architecture

15

Context Mapper - Hub and Spoke Architecture

16

Context Mapper - Hub and Spoke Architecture

17
Discovery

Library
CML

Context Mapper - Hub and Spoke Architecture

18
CML

Discovery
Library

Context Mapper - Hub and Spoke Architecture

19
Discovery

Library
CML

Integration Strategy in a Context Map Diagram

20

Mono2Micro Pipeline Extension

21

Mono2Micro Pipeline Extension

21

Mapping Strategy

22

Represent a set of
entities grouped by
similarity criteria

Represent domain
classes in the source
code

Represent a sequence of
read/write accesses to
entities in one or more
clusters

Entities

A decomposition can be represented by three main concepts:

Clusters Functionalities

Mapping Strategy

23

Mapping Strategy

24

Mapping Strategy

25

Mapping Strategy

26

Mono2Micro Pipeline Extension

27

EvaluationIV

28

Case Study with Quizzes-Tutor

29

Case Study with Quizzes-Tutor

30

Case Study with Quizzes-Tutor

31

Answers to Research Questions

32

RQ1: By following and respecting both tools models, and utilizing the
Discovery Library module as the integration point.

RQ2: By defining a decomposition in Mono2Micro and establishing a
mapping between the concepts to DDD patterns in CML.

RQ3: An architect benefits by having a complete semi-automatic
pipeline to model decompositions in a DDD environment.

ConclusionsV

33

Conclusions

34

• Almost no migration tools incorporate DDD editing.

• Integration of Mono2Micro and Context Mapper as a
solution.

• Defining a mapping of concepts between tools so
that DDD can be used.

Contributions

• A monolith decomposition tool based on DDD modeling

• A new data collector on the side of Mono2Micro

• A new contract between Mono2Micro and Context Mapper

• New Mono2Micro decomposition discovery strategies

• New syntax rules in CML on the side of Context Mapper
35

Questions & Discussion

References

i

• Lopes, T.D., Silva, A.R.: Monolith Microservices Identification: An Extensible Multiple Strategy Tool Examination Committee. Master’s thesis, Instituto
Superior Técnico, University of Lisbon (2022)

• Nunes, L., Santos, N., Rito Silva, A.: From a monolith to a microservices architecture: An approach based on transactional contexts. In: Software
Architecture: 13th European Conference, ECSA 2019, Paris, France, September 9–13, 2019, Proceedings. pp. 37–52 (2019).
https://doi.org/10.1007/978-3-030-29983-5 3

• Correia, J., Rito Silva, A.: Identification of monolith functionality refactorings for microservices migration. Software: Practice and Experience 52(12),
2664–2683 (2022). https://doi.org/10.1002/spe.3141

• S. Kapferer. and O. Zimmermann., “Domain-specific language and tools for strategic domain-driven design, context mapping and bounded context
modeling,” in Proceedings of the 8th International Conference on Model-Driven Engineering and Software Development - MODELSWARD,, INSTICC.
SciTePress, 2020, pp. 299–306

• Kapferer, S., Zimmermann, O.: Domain-driven service design. In: Dustdar, S. (ed.) Service-Oriented Computing. pp. 189–208. Springer International
Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-64846-6 11

• Shaw, M.: Writing good software engineering research papers. In: 25th International Conference on Software Engineering, 2003. Proceedings. pp.
726–736 (2003). https://doi.org/10.1109/ICSE.2003.1201262

