
Domain-driven Architecture Modeling and
Rapid Prototyping with Context Mapper

Stefan Kapferer and Olaf Zimmermann

University of Applied Sciences of Eastern Switzerland (OST),
Oberseestrasse 10, 8640 Rapperswil, Switzerland

stefan@kapferer.ch, olaf.zimmermann@ost.ch

Abstract. Strategic Domain-driven Design (DDD) has become an es-
tablished practice for system decomposition and service identification
in recent years. The trend towards microservices increased the popular-
ity of DDD patterns such as Subdomain, Bounded Context, Aggregate
and Context Map. In our previous work, we presented a Domain-Specific
Language (DSL) providing a clear and concise interpretation of the DDD
patterns and their combinations. As a machine-readable description of
DDD, the DSL establishes a foundation for systematic service decompo-
sition and DDD-based architecture descriptions that can be refactored
and refined by model transformations. The DSL and supporting tools
are implemented in the open source project Context Mapper. In this
extended version of our previous paper we enhance the DSL grammar
to allow domain-driven designers to prototype applications rapidly: they
can specify user stories and/or use cases in the DSL, and model transfor-
mations can then derive Subdomains and Bounded Contexts automati-
cally. The Context Mapper tool chain supports the continuous, iterative
specification and evolution of Context Maps and other service design ar-
tifacts. Our validation activities included prototyping, action research,
and case studies. This paper illustrates such a transformation chain on
the basis of one of our case studies.

Keywords: Domain-driven Design · Domain-specific Language · Mi-
croservices · Model-driven Software Engineering · Service-oriented Ar-
chitecture

1 Introduction

Domain-driven Design (DDD) was introduced in a practitioner book in 2003
[10]. Since then, the DDD patterns, especially tactical ones such as Entity, Value
Object, Aggregate, and Repository, have been used in software engineering to
model complex business domains. However, strategic DDD has gained even more
attention during the last few years in the context of microservices and enterprise
application integration [30]. A second generation of DDD experts such as Vernon
[39] or Tune and Millet [38] provides advice how to apply the patterns of Evans
book in practice.

2 Stefan Kapferer and Olaf Zimmermann

The decomposition of an application into appropriately sized services is chal-
lenging. Achieving high cohesion within the services and loose coupling between
them is crucial to keep the application scalable and maintainable. It is not well
understood yet how service interfaces can be identified and which patterns and
practices are suitable to analyze and design service-oriented systems. DDD can
play a key role in answering this question: with patterns such as Bounded Con-
text (an abstraction of systems and teams developing them) and Context Map,
it provides an approach for decomposing a domain. Context mapping patterns
such as Customer-Supplier, Shared Kernel or Open Host Service can define the
relationships between the units of decomposition. However, the strategic pat-
terns come with a certain ambiguity and different interpretations of how they
shall be applied. The question how concrete (micro-)services shall be derived
from a DDD-based model (and then composed into applications) has only been
answered partially so far [31].

2 Context and Previous Work

How to decompose software systems into cohesive modules (or components and
services) that are loosely coupled is one of the classic questions and challenges
in software engineering. For instance, Parnas [29] already wrote about how to
decompose software systems into modules in 1972. Research questions that have
not been answered satisfyingly yet include a) which criteria are relevant to find
good module boundaries and b) which patterns and practices can be applied to
identify the modules or services? [30]. Practitioners in the microservices commu-
nity suggest to apply the strategic DDD patterns to tackle the problem. They
propose to model complex business domains in terms of Bounded Contexts – a
sub-system or module that implements a specific part of the domain. A Bounded
Context establishes a boundary around a domain model that consist of so-called
Aggregates: a set of objects/classes such as Entities or Value Objects. While the
terms of the domain may have different meanings outside that boundary, they
are clearly defined within the boundary (the so-called “ubiquitous language”).
As we described in our previous paper [23], the identification of suited Bounded
Contexts is still challenging. Context Maps and context mapping as a practice
shall support this process of finding Bounded Contexts. The strategic DDD pat-
terns are used on Context Maps to define the relationships between the Bounded
Contexts.

Our experience in the industry has shown that a clear understanding of how
these patterns shall work together is often missing, and different stakeholders
have different opinions on how these patterns shall be applied and combined.
Based on this observation, we derived the following hypothesis [23]:

Software engineers and service designers benefit from a precise interpretation of
– and advice on how to apply and combine – the strategic DDD patterns.

We further consider a Context Map an artifact that evolves iteratively. Soft-
ware architects and DDD adopters develop a Context Map by increasing their

Domain-driven Architecture Modeling and Rapid Prototyping 3

knowledge about the problem domain step-by-step. This is why we believe that
Context Maps written in a formal language such as our Context Mapper DSL
(CML) can be beneficial, since we can offer automated transformation tools that
support the evolution of the models. It is further possible to generate other rep-
resentations such as Unified Modeling Language (UML) diagrams or graphical
Context Maps. This has already led us to our second hypothesis [23]:

Adopters of DDD benefit from a tool which supports the creation of DDD
pattern-based models in a rigorous and expressive way. They want to transform

and evolve such models iteratively.

In our previous paper [23] we presented a meta-model based on the DDD
patterns and our CML language that implements that model. We illustrated
how Context Mapper users can represent Domains, Subdomains, and Bounded
Contexts in CML. We further proposed a set of semantic rules that reflect our
interpretation of how the strategic DDD patterns can be combined. Those se-
mantic rules have been implemented as validators for the CML language.

In this paper, we present an extended version of the CML Domain-specific
Language (DSL) [23] that allows to prototype Domains and Bounded Contexts
rapidly on the basis of use cases [8] and/or user stories [2]. Furthermore, we
demonstrate how we validated the usefulness of the language and our hypothesis
above by implementing model transformations that support the rapid prototyp-
ing. This paper illustrates such a process on an exemplary case.

The remainder of the paper is structured in the following way. Section 3
explains important DDD concepts briefly. It further introduces the meta-model
behind the CML language [23] and discusses related work. Section 4 explains
our first contribution: the DSL syntax including the latest extensions for fea-
ture modeling with use cases and user stories. In Section 5 we introduce a set of
model transformations that support rapid prototyping of Domains and Bounded
Contexts explained with an exemplary case. This section does a) suggest trans-
formations to derive Bounded Contexts automatically with tool-support, and
b) validate whether our language can serve as a foundation for evolving DDD
Context Maps step-by-step. Section 6 discusses further validation activities and
outlines pros and cons of the presented approach. Section 7 concludes and out-
lines future work.

3 Domain-driven Design (DDD) Essence, Meta-Model

Since Evans has published his original DDD book [10], other – mostly gray –
literature on this topic has been published. Our analysis and interpretation of
the patterns is based on the books of Evans [10] and Vernon [39]. Our personal
professional experience [20] has influenced the meta-model as well. Additional
patterns of Evans’ DDD reference [11], which has been published a fews years
after his first book, were also considered. We further studied publications of
context mapping experts such as Brandolini [5] and Plöd [31,32].

4 Stefan Kapferer and Olaf Zimmermann

3.1 Motivating Example

Strategic Domain-driven Design (DDD) can be used to decompose the problem
domain of a software system into multiple Subdomains and the so-called Bounded
Contexts. It also allows architects to define the relationships between Bounded
Contexts, e.g., how they work together. To explain pattern concepts (and also, in
Section 4, the DSL syntax) we use a fictitious insurance software scenario. Figure
1 illustrates the Context Map of the scenario inspired by the visualizations of
Vernon [39], Brandolini [5] and Plöd [31].

Fig. 1. Insurance Scenario Example Context Map

Figure 1 also highlights a number of design issues that arise when refining the
Context Map and domain design. For instance, for each component (or context),
it has to be decided whether to buy a software product (or install free software),
rent the desired functionality as a cloud service offered by a cloud provider or
build it. Connectors (here: relationships between contexts) may have a direction
and require integration technologies such as message exchange formats and pro-
tocols (such as JSON over HTTP, XML over a mesage queue, etc.). Many data
management decisions are required as well (copy or access patters, ownership,
update frequencies, etc.). DDD and Context Maps can help identify the need for
such decisions, and can also document the decision outcome.

3.2 DDD Patterns

A Bounded Context defines an explicit boundary within which a particular do-
main model, implementing parts of Subdomains, applies. This boundary affects
team organization as well as physical manifestations such as code bases and
database schemata. The internal design of a Bounded Context is specified with

Domain-driven Architecture Modeling and Rapid Prototyping 5

the tactic DDD patterns, including the Aggregate pattern. An Aggregate is a
cluster of domain objects (such as Entities, Value Objects, and Services) which
is kept consistent with respect to specific invariants and typically also represents
a unit of work regarding system (database) transactions. A Context Map pro-
vides a global view over all Bounded Contexts which are related to the one a
team is working on.

The DDD relationship patterns allow modelers to describe how two Bounded
Contexts and their development teams work together. The Partnership relation-
ship describes an intimate mutual relationship between two Bounded Contexts,
since the resulting product of the two can only fail or success as a whole. A Shared
Kernel relationship indicates that two contexts are very closely related and the
two domain models overlap at many places. This pattern is often implemented
as a shared library that is maintained by both teams.

Upstream-downstream relationships are marked with a U for upstream and
a D for downstream in our illustration in Figure 1. The terms upstream and
downstream are used to describe relationships in which only one Bounded Con-
text influences the other; the upstream influences the downstream. Thus, the
downstream Bounded Context depends on the domain model of the upstream
Bounded Context, but not vice versa. A Customer-Supplier relationship is given
if the downstream Bounded Context in an upstream-downstream relationship
has power regarding the implementation decisions of the upstream. The supplier
respects the requirements of the downstream in its development plans.

The patterns Published Language (PL), Open Host Service (OHS), Anticor-
ruption Layer (ACL) and Conformist (CF) are used to describe the interaction
between Bounded Contexts in an upstream-downstream relationship. Figure 1
shows them as labels of relationship ends. A Bounded Context can offer an OHS
to grant access to a subsystem as a set of open APIs if multiple other Bounded
Contexts require access to the same functionality. The PL pattern advises to use
a well-documented shared language for communication and translation. Serving
as a wrapper, an ACL protects the domain model of a Bounded Context from
changes to another one it depends on. In contrast to an ACL, a context apply-
ing CF decides to simply conform to the domain model of the other context and
must therefore always adjust its model to follow changes of the other context.
Due to space limitations we do not explain all pattern details here, but refer the
reader to the literature [10,11,31,39].

3.3 DDD Meta-Model for Context Mapper

The meta-model presented in this section is based on the previously explained
DDD patterns and our own analysis and understanding regarding how they can
be combined. The model is illustrated in Figure 2. It is implemented by our DSL
and the Context Mapper tool introduced in Section 4.

The most central element in our meta-model is the Context Map. A Context
Map shows Bounded Contexts and their relationships. A Bounded Context im-
plements parts of one or many Subdomains, which can be Core Domains, Sup-
porting Domains or Generic Subdomains. Both a Subdomain and a Bounded

6 Stefan Kapferer and Olaf Zimmermann

Fig. 2. Context Mapper: Strategic DDD Meta-Model (UML class diagram) [23]

Context benefit from a statement regarding the vision and purpose of their own
part of the domain. Hence, we apply the Domain Vision Statement pattern. We
further include the Knowledge Level pattern on the level of a Bounded Context.
The Responsibility Layers pattern is implemented by assigning single responsi-
bilities to Bounded Contexts.

We distinguish between symmetric and asymmetric relationships between
Bounded Contexts: We call asymmetric relationships upstream-downstream re-
lationships in our meta-model. This is in line with the terminology in the DDD
literature. In an upstream-downstream relationship only one context depends
on the other. Likewise, only one Bounded Context influences the other; the
upstream-downstream metaphor indicates an influence flow between teams and
systems as discussed by [31]. The Partnership and Shared Kernel patterns, on the
other hand, describe symmetric relationships. The Bounded Contexts involved
in such relationships are mutually dependent on another.

The remaining patterns Published Language (PL), Open Host Service (OHS),
Anticorruption Layer (ACL) and Conformist (CF) are roles taken by the up-
stream or downstream context within an upstream-downstream relationship.
OHS and PL are patterns implemented by the upstream, which exposes parts

Domain-driven Architecture Modeling and Rapid Prototyping 7

of the model to be used by the downstream. The CF and ACL patterns are
implemented by the downstream, which decides to either conform to the model
exposed by the upstream or protect itself from changes (ACL).

According to our analysis, the Customer-Supplier pattern is a special case of
upstream-downstream. We indicated this in Figure 2 by distinguishing between
Customer-Supplier and generic upstream-downstream relationships.

In addition to this meta-model we presented a set of semantic rules in our pre-
vious paper [23]. Those rules reflect our own interpretation of the DDD patterns
and state which combinations are allowed and which are not allowed according
to this interpretation.

3.4 Architectural Viewpoints

Bounded Contexts are created for different reasons and can be seen from different
perspectives. Brandolini [5] presents a comprehensive introduction into context
mapping and explains different scenarios for the evolution of Bounded Contexts.
In our DSL we implemented an additional attribute context type to reflect differ-
ent reasons for creation. We see these types as different viewpoints corresponding
to the 4+1 view model of software architecture [25]. Simon Brown’s C4 model
[6] is another but very similar approach to visualize software architecture from
different perspectives. Table 1 lists the four context types, Feature, Application,
System and Team and compares them with the perspectives of 4+1 and C4.

Table 1: FAST Context Types

Type Description and Mapping to Related Work
Feature or
Function

This is a Bounded Context representing a feature or requirement
which has been identified by the Object-oriented Analysis (OOA).
In terms of the 4+1 model [25], it represents a context from the
Scenario viewpoint. The system context view (level 1) of the C4
model shows such contexts and their relationships.

Application Such a Bounded Context represents a certain application. It is
evolved by Object-oriented Design (OOD) and from our under-
standing reflects the Logical and Development viewpoint in terms
of 4+1 [25]. The C4 model does not differentiate between features
or applications. Therefore application contexts map to the system
context view as well (level 1). Its tactic DDD content (Aggregates
with their Entities, Services, etc.) can be seen as C4 components.

System A Bounded Context representing an physical system, container,
or application tier. This type maps to the physical and/or pro-
cess viewpoint in the 4+1 model [25]. The latter perspective is
concerned with the way systems communicate and integrate with
each other, for example by implementing Enterprise Integration
Patterns (EIP) [18]. System Bounded Contexts correspond to the
containers in the container diagram of C4.

8 Stefan Kapferer and Olaf Zimmermann

Table 1: FAST Context Types (continued)

Type Description
Team A Team context represents a small organisational unit. A new

context of this type might be created when a team has to be split
to scale the company. This cross-cutting perspective is inspired
by Conway’s Law [9], stating that a systems design copies the
communication structures of an organization. There are no corre-
sponding concepts in 4+1 or C4.

The model transformations presented in Section 5 make use of the types
Feature and System; the design of Application contexts remains manual work
(requiring creativity and problem solving skills). The rapid prototyping process
leads from user requirements to a Feature Bounded Context first. Later, the
context specifications get more detailed and we switch the perspective to systems.
Section 5 explains the process in detail.

3.5 Related Work

Decomposing monolithic systems into microservice architectures [42] is a topic
with a huge attention within the last years not only in the industry but in the
academic field as well [4,13,14,17,19,28]. Furthermore, DDD with its Bounded
Contexts promises to ease this challenging task [13,19,26,28,30,33]. However,
there are not many tools which support modeling and specifying a system for-
mally in terms of the strategic DDD patterns in order to decompose it in a
structured manner.

Rademacher [34] presents a formal modeling language based on UML. The
UML profile which extends meta-classes with stereotypes for DDD patterns shall
be used for modeling microservice architectures. They further aim to derive code
from their UML models in future projects. However, the profile seems to focus
on modeling Bounded Contexts with the tactical DDD patterns. The strategic
patterns concerning the relationships between the contexts are not mentioned
explicitly.

Le et al. [27] propose a DDD approach using meta-attributes to capture
domain-specific requirements. The meta-attributes are implemented as Java an-
notations. Their aim is to overcome gaps between different domain models of
different stakeholders such as domain experts, designers and programmers. This
approach mainly aims to support the software designing process on a tactical
level as well. Furthermore, it differs from our approach in the sense that it does
not explicitely expresses DDD patterns.

A few projects implementing DSLs for tactic DDD patterns exist, such as
Sculptor1, fuin.org’s DDD DSL2 and DSL Platform3. Further approaches and

1 http://sculptorgenerator.org/
2 https://github.com/fuinorg/org.fuin.dsl.ddd
3 https://docs.dsl-platform.com/dsl-concepts

http://sculptorgenerator.org/
https://github.com/fuinorg/org.fuin.dsl.ddd
https://docs.dsl-platform.com/dsl-concepts

Domain-driven Architecture Modeling and Rapid Prototyping 9

projects based on annotations exist as well. None of these covers the strategic
DDD patterns concerning the relationships between Bounded Contexts.

Informal graphical representations of Context Maps and the strategic DDD
patterns were introduced by Brandolini [5] and Vernon [39]. Plöd proposed a for-
mal graphical notation for Context Maps [31], which has not been implemented
in a tool yet.

A less formal approach towards the identification of Bounded Context is
“Event Storming”, invented by Brandolini4. In our online documentation5 we
discuss how event storming results can be formalized with Context Mapper.
More advice how to decompose a system into Bounded Contexts can be found
in the gray literature6 7 8. However, the authors of these online resources fo-
cus on providing advice, best practices and heuristics, but do not offer formal
approaches and concrete transformation tools as Context Mapper does.

4 Context Mapper DSL (CML)

We implemented the Context Mapper9 tool that allows software architects to
model systems according to the DDD meta-model introduced in the previous
section. The following DSL examples are based on the insurance scenario in-
troduced in Section 3. The complete example can be found in our examples
repository10.

4.1 Domains and Subdomains

Before thinking in terms of Bounded Contexts, DDD practitioners typically start
discovering and analyzing a domain by decomposing it into Subdomains. As we
explain in Section 5, we call this the domain analysis phase.

Domains and Subdomains in CML are declared as illustrated in Listing 4.1
and Listing 4.2. A Subdomain is of the type Core Domain, Supporting Subdomain
or Generic Subdomain according to our meta-model and [10].

Listing 4.1. Subdomain Syntax in CML

Domain Insurance {
Subdomain CustomerManagementDomain {

type = CORE_DOMAIN
domainVisionStatement = "Customer-related entities..."

Entity Customer
Entity Address

4 https://ziobrando.blogspot.com/2013/11/introducing-event-storming.
html

5 https://contextmapper.org/docs/event-storming/
6 https://leanpub.com/ddd-by-example/
7 https://medium.com/nick-tune-tech-strategy-blog/
8 https://github.com/ddd-crew/
9 https://contextmapper.org/

10 https://github.com/ContextMapper/context-mapper-examples/

https://ziobrando.blogspot.com/2013/11/introducing-event-storming.html
https://ziobrando.blogspot.com/2013/11/introducing-event-storming.html
https://contextmapper.org/docs/event-storming/
https://leanpub.com/ddd-by-example/
https://medium.com/nick-tune-tech-strategy-blog/
https://github.com/ddd-crew/
https://contextmapper.org/
https://github.com/ContextMapper/context-mapper-examples/

10 Stefan Kapferer and Olaf Zimmermann

Listing 4.2. Subdomain Syntax in CML (continued)

Service CustomerService {
createCustomer;
changeAddress;

}
}

Subdomain PolicyManagementDomain {
type = CORE_DOMAIN

Entity Contract
Entity Policy

}

Subdomain PrintingDomain {
type = SUPPORTING_DOMAIN

}
}

The CML language allows users to specify which Entities (domain objects)
are part of which Subdomains. With Services it is further already possible to
declare operations that will be required.

4.2 Bounded Contexts

From the domain analysis with the Subdomains as result we typically move onto
the stratgic DDD phase where the models become more concrete and organized
within Bounded Contexts. Listing 4.3 shows the declaration of the Customer-
ManagementContext as an example for a Bounded Context in CML. A Bounded
Context has a type as already explained in Section 3. The following attributes
are implementations of the Domain Vision Statement and the Responsiblity Lay-
ers patterns. The user can further specify the implementation technology of a
Bounded Context. A Bounded Context consists of one or more Aggregates. In-
side the Aggregates the language supports the usage of all tactical DDD patterns
to fully specify the domain model of the Bounded Context. The implementation
of CML inside the Aggregates is based on the Sculptor11 project.

Listing 4.3. Bounded Context Syntax in CML

BoundedContext CustomerManagementContext implements CustomerManagementDomain {
type = FEATURE
domainVisionStatement = "The customer context ..."
responsibilities = "Collects and exposes customer data",

"Manages the customers addresses"
implementationTechnology = "Java, JEE Application"

Aggregate Customers {
Entity Customer {

aggregateRoot

String firstname
String lastname

}
}

}

11 http://sculptorgenerator.org/

http://sculptorgenerator.org/

Domain-driven Architecture Modeling and Rapid Prototyping 11

With the implements keyword we refer back to the analysis part and specify
which Subdomains are implemented by a specific Bounded Context. Note that
a Bounded Context not necessarily implements a complete Subdomain.

4.3 The Context Map

The central and most important structure of CML is the Context Map which
specifies the relationships between Bounded Contexts. Listing 4.4 shows a small
example of a Context Map written in CML. The contains keyword indicates the
Bounded Contexts that are added to the Context Map. They can then be used
to declare relationships.

Listing 4.4. Context Map Syntax in CML

ContextMap {
contains CustomerManagementContext, PolicyManagementContext

CustomerManagementContext [U,OHS,PL]->[D,CF] PolicyManagementContext {
implementationTechnology = "RESTful HTTP"

}
}

Listing 4.4 also features an exemplary upstream-downstream relationship.
The endpoints of this relationship apply three more patterns, Open Host Service
(OHS), Published Language (PL) and Conformist (CF).

4.4 Relationship Syntax

For symmetric relationships the syntax uses an arrow directing to both Bounded
Contexts (< − >), whereas asymmetric relationships use an arrow (− > or
< −) pointing from the upstream towards the downstream. In all cases, the
relationship roles are declared within brackets as illustrated in Listing 4.4. Note
that the declaration of the implementation technology is optional and we omit
it in the following examples.

Partnership Listing 4.5 shows an example for the Partnership (P) pattern,
which is a symmetric relationship.

Listing 4.5. Partnership Pattern Syntax in CML

RiskManagementContext [P]<->[P] PolicyManagementContext

Shared Kernel The second symmetric relationship is the Shared Kernel (SK).
The syntax is identical to the Partnership. Listing 4.6 illustrates an example.

Listing 4.6. Shared Kernel Pattern Syntax in CML

PolicyManagementContext [SK]<->[SK] DebtCollection

12 Stefan Kapferer and Olaf Zimmermann

Generic Upstream-Downstream Relationship As already mentioned, the
upstream-downstream (or asymmetric) relationships use an arrow from the up-
stream towards the downstream, expressing the influence flow. This syntax states
which Bounded Context is upstream and which one is downstream in an expres-
sive way. The arrowhead can be placed either on the left or on the right. Thus,
the declaration examples in Listings 4.7 and 4.8 are semantically equal.

Listing 4.7. Upstream-Downstream Relationship in CML (1)

PrintingContext [U]->[D] PolicyManagementContext

Listing 4.8. Upstream-Downstream Relationship in CML (2)

PolicyManagementContext [D]<-[U] PrintingContext

Upstream-Downstream Roles The upstream and downstream roles Open
Host Service (OHS), Published Language (PL), Anticorruption Layer (ACL)
or Conformist (CF) are listed within the brackets after the upstream (U) and
downstream (D) specification. Listing 4.9 illustrates an example with the OHS
and PL patterns on the upstream side and the ACL pattern on the downstream
side.

Listing 4.9. Upstream-Downstream Relationship with Roles

PrintingContext [U,OHS,PL]->[D,ACL] PolicyMgmtContext

Customer-Supplier Relationship The customer-supplier relationship is a
special case of an upstream-downstream relationship in which the upstream is
called supplier and the downstream is called customer. The syntax is therefore
almost identical to the generic upstream-downstream relationship; to state that
the upstream-downstream relationship is a customer-supplier relationship the
user has to add the abbreviations S for supplier and C for customer. These
abbreviations must appear behind the U /D, but before the relationship roles,
as shown in Listing 4.10.

Listing 4.10. Customer-Supplier Relationship in CML (1)

SelfServiceContext [D,C,ACL]<-[U,S,PL] CustomerMgmtContext

However, since the upstream in a customer-supplier relationship is always
the supplier and the downstream is always the customer, it is also possible to
omit the U and D abbreviations in this case. Thus, the declaration in Listing
4.11 is semantically equal to the one in Listing 4.10.

Listing 4.11. Customer-Supplier Relationship in CML (2)

SelfServiceContext [C,ACL]<-[S,PL] CustomerMgmtContext

Domain-driven Architecture Modeling and Rapid Prototyping 13

4.5 Expressing User Requirements

In addition to the CML concepts presented above and in our previous publication
[23], we enhanced Context Mapper to express features in the form of use cases
[8] or user stories [2]. This grammar feature allowed us to realize the rapid
prototyping process introduced in Section 5.

Listing 4.12 illustrates a user story written in CML. The syntax corresponds
to the “role-feature-reason” format invented at Connextra in the UK and pub-
lished by the Agile Alliance [2]. Note that we extended the template with the
“with its” and “for a” parts so that one can model attributes and references to
other entities. These elements are not part of the original template [2]. How-
ever, they are optional in CML; we hypothesize that both domain experts and
software designers can adopt such an extension (which is subject to validation).

Listing 4.12. User Story in CML

UserStory ManageCustomers {
As an "Insurance Employee"

I want to "create" a "Customer" with its "firstname", "lastname"
I want to "update" an "Address" for a "Customer"
I want to "create" a "Contract" for a "Customer"

so that "I am able to manage the customer data and offer them contracts."
}

In addition, to reduce code duplication CML allows modellers to add multiple
“I want to” parts per user story as shown in Listing 4.12. This is a slight deviation
from the original template [2] as well. Listing 4.13 illustrates how the same user
requirement can be formulated as a use case in CML.

Listing 4.13. Use Case in CML

UseCase ManageCustomers {
actor "Insurance Employee"
interactions

"create" a "Customer" with its "firstname", "lastname",
"update" an "Address" for a "Customer",
"create" a "Contract" for a "Customer"

benefit "Being able to manage the customers data and offer them contracts."
scope "Insurance Application"
level "Summary"

}

The attributes actor, interactions, and benefit cover the same information
as the user story format seen before. With the additional attributes scope and
level we support expressing use cases according to the brief or casual format
suggested by A. Cockburn [8].

We have shown the core concepts of CML Context Maps above. Due to space
limitations we cannot present all abilities of our language. CML currently also
supports an alternative syntax to declare relationships for A/B testing purposes.
All language features are documented online12 and the complete insurance exam-
ple can be found in our examples repository13. In the next section we introduce
one approach how we validated our modeling language and our hypothesis by

12 https://contextmapper.org/docs
13 https://github.com/ContextMapper/context-mapper-examples

https://contextmapper.org/docs
https://github.com/ContextMapper/context-mapper-examples

14 Stefan Kapferer and Olaf Zimmermann

providing transformation tools that allow users to prototype an application in
terms of DDD patterns rapidly.

5 Language and Tool Extension: Rapid Prototyping

The Context Mapper DSL (CML) is based on the Xtext14 language framework.
The models behind the textual representation are Eclipse Modeling Framework
(EMF) [37] models. Therefore, we can support the evolution of CML models
by providing model transformations [22]. Starting from the user story [2] or use
case [7] syntax introduced in Section 4, we designed and implemented three novel
model transformations that support rapid prototyping. The transformations do
not aim at replacing human design work but capture some proven analysis and
design heuristics from the literature and online resources.

Fig. 3. Rapid Prototyping Transformation Steps

Figure 3 illustrates the steps and provided transformations. A domain mod-
eler can specify requirements in the form of user stories [2] or use cases [8] as
an initial step. The following model transformations support him/her in deriv-
ing Subdomains and Bounded Contexts from these requirements. Hence, the
CML language is able to represent all stages of the process: requirements (use
cases and/or user stories), Subdomains, and Bounded Contexts (of the different
architectural viewpoints explained in Section 3).

The Exemplary Case In order to validate our use case grammar we modeled
a case of A. Cockburn’s book [8] in CML. The following Listing 5.1 shows the
use case ”Get paid for car accident” (we stay in the insurance domain) written

14 https://www.eclipse.org/Xtext/

https://www.eclipse.org/Xtext/

Domain-driven Architecture Modeling and Rapid Prototyping 15

in our DSL. The interactions in the CML use case correspond to the six steps
described by Cockburn [8].

Listing 5.1. “Get paid for car accident” in CML

UseCase Get_paid_for_car_accident {
actor "Claimant"
interactions
"submit" a "Claim" with its "date", "amountClaimed", "desc" for a "Policy",
"verifyExistanceOf" "Policy" with its "startDate", "endDate" for a "Contract",
"assign" an "Agent" with its "personalID", "firstName", "lastName" for "Claim",
"verify" "Policy" for a "Contract",
"pay" "Claimant" with its "firstName", "lastName",
"close" "Claim" for "Claimant"
benefit "Claimant submits claim and and gets paid from the insurance company."
scope "Insurance company"
level "Summary"

}

Step 1: Derive Subdomains From Requirements Context Mapper offers
a model transformation that produces a Subdomain definition given a set of
requirements or features as shown in Listing 5.1 as input. From the use case in
Listing 5.1 the transformation creates the Subdomain illustrated by Listing 5.2.

Listing 5.2. Subdomain Derived From Use Case

Domain Insurance_Application {
Subdomain ClaimsManagement {

domainVisionStatement "Aims at promoting: A claimant submits a claim and ..."
Entity Claim {

Date date
Double amountClaimed
String description
- Agent agent

}
Entity Policy {

Date startDate
Date endDate
- List<Claim> claims

}
Entity Contract {

- List<Policy> policies
}
Entity Agent {

Long personalID
String firstName
String lastName

}
Entity Claimant {

String firstName
String lastName
- List<Claim> claims

}
Service AccidentService {

submitClaim;
verifyExistanceOfPolicy;
assignAgent;
verifyPolicy;
payClaimant;
closeClaim;

}
}

}

16 Stefan Kapferer and Olaf Zimmermann

The transformation uses the verbs, Entity names, and attributes mentioned in
the interactions to derive the elements of the Subdomain. The user selects the
use cases and user stories that will be jointly mapped to a single Subdomain,
thereby controlling the placement of Entities and Services. This makes it pos-
sible to group by high cohesion, low coupling criteria at an early stage, while
still analyzing the domain and the requirements. These placement decisions can
be revised later on. The goal of this step is to break the domain down into sets
of Entities and operations that belong together according to the business/do-
main. For example: typical Subdomains in the insurance domain are customers,
contracts/policies, claims.

The mapping of the transformation from Listing 5.1 to Listing 5.2 (Step 1) is
trivial. Figure 4 illustrates it more explicit. The single interactions contain a verb,
an entity name, entity attributes, and optionally a reference to another Entity.
Based on this information we derive Entities with attributes and references, and
Services with operations for the Subdomain. For example, the interaction shown
in Figure 4 leads to the Entity called Claim and the Service operation called
submitClaim in the resulting Subdomain.

Fig. 4. Model transformation mapping: Use Case to Subdomain (Entities and Services)

Step 2: Derive Feature Bounded Context This step is performed by ap-
plication designers and software architects when transitioning from analysis to
design. Context Mapper can derive a Bounded Context of the type Feature (see
Architectural Viewpoints in Section 3) automatically from the Subdomain illus-
trated above (Step 2).

In this transformation step the user can select a set of Subdomains to be
mapped into one Bounded Context; one Bounded Context can implement parts
of multiple Subdomains [39]. In case multiple Subdomains are involved, we map
each Subdomain into one Aggregate of the Bounded Context. The transforma-
tion further increases the level of detail in the Service operations and introduces
parameters and return types. The resulting Bounded Context for our example
use case is shown in Listing 5.3. Thus, the input of the transformation are mul-
tiple Subdomains and the output is one Bounded Context. The user is in control
again and decides which Subdomains shall be implemented as one Bounded
Context. The purpose of this step is to organize the implementation of the Sub-
domains.

Domain-driven Architecture Modeling and Rapid Prototyping 17

Listing 5.3. Bounded Context (Feature) Derived From Subdomain

BoundedContext ClaimsManagement implements ClaimsManagement {
domainVisionStatement "Realizes the following subdomains: ClaimsManagement"
type FEATURE
/* Contains the entities and services of the ’ClaimsManagement’ subdomain.

* TODO: You can now refactor the aggregate, for example by ...

* TODO: Add attributes and operations to the entities.

* TODO: Add operations to the services.

* Find examples and further instructions on our website:

* https://contextmapper.org/docs/rapid-ooad/ */
Aggregate ClaimsManagementAggregate {

Service Get_paid_for_car_accidentService {
boolean submitClaim (@Claim claim);
boolean verifyExistanceOfPolicy (@Policy policy);
boolean assignAgent (@Agent agent);
boolean verifyPolicy (@Policy policy);
boolean payClaimant (@Claimant claimant);
boolean closeClaim (@Claim claim);

}
Entity Claim {

String date
String amountClaimed
String description
ClaimId claimId
- List<Agent> agentList

}
Entity Policy {

String startDate
String endDate
PolicyId policyId
- List<Claim> claimList

}
Entity Contract {

ContractId contractId
- List<Policy> policyList

}
Entity Agent {

String personalID
String firstName
String lastName
AgentId agentId

}
Entity Claimant {

String firstName
String lastName
ClaimantId claimantId
- List<Claim> claimList

}
}

}

The generated Bounded Context contains ”TODO” hints/comments that
help the modeler to refine and detail the design. Note that the transformation
produces generic parameter and return types in case they cannot be mapped
to Entities automatically. Context Mapper users can indicate that they refined
the Bounded Context setting its type to Application. The transformation in the
next step supports contexts of the type Feature as well as Application as input.

Given such a Bounded Context of the type Feature, Context Mapper is al-
ready able to generate a running Java application in a few steps. We do not
discuss code generation in this paper, but we documented how users can gen-

18 Stefan Kapferer and Olaf Zimmermann

erate a Java application using Context Mapper and JHipster15 in our online
tutorial16. The tool generates one Microservice for each Bounded Context in the
CML model.

Step 3: Derive System Bounded Contexts Bounded Contexts of the type
Feature represent a boundary around specific features as already explained in
Section 3. In this chain described here, we map Bounded Contexts of the type
Feature one-to-one to Bounded Contexts of the type Application. Therefore, Step
3 in our transformation process already changes the architectural viewpoint to
physical systems; Bounded Contexts of the type System. Currently, Context
Mapper offers a transformation to transform a Feature Bounded Context (or
Application Bounded Context) into two System Bounded Context: a frontend
and a backend system. Listing 5.4 illustrates the result for our use case. Note
that we do not repeat the contents of the Aggregates to save space at this point.
Based on the domain model seen in Listing 5.3 this transformation generates an
Aggregate in the backend context and a view model (technically an Aggregate
as well) in the frontend context. The transformation takes one Bounded Context
as input and produces two new Bounded Contexts. The goal of this step is to
break an application down into its deployment units, tiers, or technical building
blocks.

Listing 5.4. Bounded Context (System) Derived From Feature Context

ContextMap {
contains ClaimsManagementFrontend, ClaimsManagementBackend

ClaimsManagementBackend [PL] -> [CF] ClaimsManagementFrontend {
implementationTechnology "RESTful HTTP"
exposedAggregates ClaimsManagementAggregate

}
}

BoundedContext ClaimsManagementBackend implements ClaimsManagement {
domainVisionStatement "Realizes the following subdomains: ClaimsManagement"
type SYSTEM
implementationTechnology "Java, Spring Boot"
Aggregate ClaimsManagementAggregate {

// removed contents to save space
}

}

BoundedContext ClaimsManagementFrontend implements ClaimsManagement {
domainVisionStatement "Realizes the following subdomains: ClaimsManagement"
type SYSTEM
implementationTechnology "Angular"
Aggregate ViewModel {

// removed contents to save space
}

}

In addition, the transformation in Step 3 creates a Context Map with a
relationship that illustrates the information flow between the frontend and the
backend system.

15 https://www.jhipster.tech/
16 https://contextmapper.org/docs/jhipster-microservice-generation/

https://www.jhipster.tech/
https://contextmapper.org/docs/jhipster-microservice-generation/

Domain-driven Architecture Modeling and Rapid Prototyping 19

Steps 4 to n: Continue Decomposing Into Subsystems Finally, we offer
a transformation “Split System Context Into Subsystems” that allows users to
further decompose a system into more subsystems or deployment units. The
input for this transformation is always one Bounded context, and the output
are two Bounded Contexts (split one into two). For example: one could split the
backend tier into a domain logic and a database tier.

Besides the transformations presented above we realized a set of Architec-
tural Refactorings (ARs)17 [36] that support the continuous improvement of the
design. They allow Context Mapper users to further split or merge Bounded Con-
texts and Aggregates, or extract parts of the domain model into new Bounded
Contexts. We discuss our ARs in a separate paper [24] in more detail. All these
transformation tools supported us in applying the presented modeling language
in case studies and self experiments with the goal to validate the practicability
of the DSL. The next section lists all our validation activities in more detail and
discusses strengths and weaknesses of the approach.

6 Validation and Discussion

Goals and Techniques We validated our approach according to Shaw’s rec-
ommendations [35] with the goal to demonstrate correctness, usefulness and
effectiveness according to the validation type “experience” [35]. Having designed
our meta-model we implemented a prototype, the first version of our DSL, to
validate the model. We made the tool available for download allowing practi-
tioners to evaluate it (including ourselves when working in industry projects).
To validate the implementation we applied empirical validation techniques such
as prototyping, case study [40], and action research [3].

Conducted Validation Activities The prototypical implementation of the
tools allowed us to evaluate the language, its abilities, and our hypothesis that
the DSL can provide a foundation for service design and system decomposition.

We conducted several self-experiments and action research, including model-
ing Cockburn’s sample use case [8] explained in the previous Section 5. We also
demonstrated the tool to DDD thought leaders [39], peers and interested prac-
titioners; one of the authors demonstrated another end-to-end example of the
rapid prototyping chain at ICWE 202018. Feedback from these demonstrations
was continuously incorporated into our research cycles and development sprints.
Since November 2018 we published 50 Context Mapper releases.

Next, the rapid OOAD/DDD toolchain was used in a two-hour service de-
sign workshop with five software architects with multiple years of experience in
professional services (enterprise application development and integration); they
were familiar with strategic and tactic DDD. One of the authors received a list of

17 https://contextmapper.org/docs/architectural-refactorings/
18 https://ozimmer.ch/practices/2020/06/10/ICWEKeynoteAndDemo.

html

https://contextmapper.org/docs/architectural-refactorings/
https://ozimmer.ch/practices/2020/06/10/ICWEKeynoteAndDemo.html
https://ozimmer.ch/practices/2020/06/10/ICWEKeynoteAndDemo.html

20 Stefan Kapferer and Olaf Zimmermann

three service design questions (also outlining one user story/use case) two days
before the workshop: a) should services be flexible and generic/broad or spe-
cific and narrow? b) how does database design and the service autonomy tenet
influence service granularity? c) should system or business transactions (sagas)
be used? He was able to model the story and sample DDD designs for a) and
b) within one hour (supported by the transformations). Question c) was also
discussed but pertains to the service implementation rather than the API, so
was deemed out of scope. The draft model was shown in the workshop and an-
other story modeled. This helped ground the discussion and focus on a concrete
example.

During the implementation of the Context Mapper tool we also applied action
research to validate and improve the DSL iteratively and with short feedback
cycles. One of the authors modeled the Lakeside Mutual19 project, an example
application for microservice API patterns (MAP) [43], with CML to validate the
tool with a practical application. As another case study we modeled the “Cargo
Tracking” sample application [10] to validate the tool and its compatibility with
the original DDD concepts. Furthermore, we conducted a case study on a real-
world project in the health-care sector [16]. The hardened syntax was also used
to model another case, the microservices in an existing production system for
document management. An architect of the system and one of the paper au-
thors cooperated for this validation activity. Previous models were updated to
feature and re-validate the revised syntax. We further used the tool as part of
an exercise accompanying the DDD lesson of the software architecture course at
our institution and collected the feedback of the nearly 20 exercise participants.
Thereby we were able to evaluate the simplicity of the DSL and improve the
syntax and tooling. The observations conducted by modeling these applications
influenced the improvements of our DSL substantially. The CML syntax intro-
duced in Section 4 is a revised version which improved writability, readability
and consistency with meta-model and DDD patterns in comparison to the first
version [21].

In addition to our own validation activities, we made the Context Map-
per tool available to the DDD community and collected feedback via issues on
GitHub. Context Mapper is available for the Eclipse IDE20 as well as for Vi-
sual Studio Code21. Via Gitpod22, Eclipse Theia23, and the Visual Studio Code
extension, we can even offer a Web IDE running in the browser. According to
the Eclipse marketplace Context Mapper has been installed over 40 times per
month in the last three months (March, April, and May 2020). We only released
the Visual Studio Code extension recently but already had 40 downloads within
the first two weeks, according to the marketplace statistics.

19 https://github.com/Microservice-API-Patterns/LakesideMutual
20 https://marketplace.eclipse.org/content/context-mapper
21 https://marketplace.visualstudio.com/items?itemName=

contextmapper.context-mapper-vscode-extension
22 https://www.gitpod.io/
23 https://theia-ide.org/

https://github.com/Microservice-API-Patterns/LakesideMutual
https://marketplace.eclipse.org/content/context-mapper
https://marketplace.visualstudio.com/items?itemName=contextmapper.context-mapper-vscode-extension
https://marketplace.visualstudio.com/items?itemName=contextmapper.context-mapper-vscode-extension
https://www.gitpod.io/
https://theia-ide.org/

Domain-driven Architecture Modeling and Rapid Prototyping 21

Validation Results The five architects in the service design workshop chal-
lenged whether a graphical representation would be better suited, whether ap-
plication services (DDD pattern) should be placed inside or outside aggregates,
whether such a tool could be used as an excuse for not engaging with end users
(the whole point of DDD: establish a conversation and a common language).
The conclusion from this validation activity was that the general approach can
be useful in education and early project stages, but should not replace careful
business analysis and coding in Java or other languages. Support for roundtrip-
ping and a careful synchronization of manual and tool supported steps in agile
(iterative, incremental) practices were seen to be critical success factors for a
broader adoption. Attendees appreciated the representation of the patterns in
the DSL; the story extension with attributes and relationships was accepted.

In general, our intermediate validation activities so far suggest that both
our hypothesis mentioned in Section 2 hold true. Discussions with DDD experts
have further confirmed that controversial debates regarding the original pattern
definitions and how the patterns can be combined exist among the practitioners,
which supports our first hypothesis stating that architects and adopters benefit
from a precise interpretation. The validation results gained from our case studies
also support our second hypothesis that a modeling language such as CML can
be helpful to model (micro-)service-oriented architectures with strategic DDD.

Threats to Validity Regarding construct validity [40] there might be a risk
that questions in our workshops or exercise lessons were misinterpreted by the
participants. We tried to mitigate this threat by selecting experienced architects
that are familiar with the topic and DDD. However, in our exercise lessons with
the less experienced students there might be a risk for misunderstandings. We
consider it unlikely that the opinions of the workshop participants, exercise par-
ticipants, and DDD experts were influenced by factors unrelated to our approach
(internal validity [40]). Threats to external validity [40] do exist, since we mainly
relied on feedback of users that are familiar with DDD. Therefore, the validation
results could vary in case we validate with other potential users (not familiar
with DDD). We mitigated this threat a bit by using the tool with students at
our university. However, future validation activities should include even more
potential users that are experienced with software architecture but not DDD
specifically. In addition, many of our experiments were self-experiments; since
Context Mapper is an open source project, we do not know all our users, but
have received direct feedback from six companies and teaching institutions lo-
cated in different European countries (so we can consider the diversity threat
and possible interest bias to be mitigated somewhat).

Analysis of Validation Results: Pros and Cons of DSL and Tools We
consider the conformance of the language and our terminology with the original
DDD patterns to be a strength of the proposed approach. DDD adopters can
familiarize themselves with the language easily. Our validation activities further
indicate that the tool can increase the productivity in context mapping, espe-

22 Stefan Kapferer and Olaf Zimmermann

cially when the map has to be improved iteratively. The model transformations
can improve such a process in comparison to drawing by hand. This support for
iterative model evolution is also a reason why we consider the approach conform
with agile practices [1]. However, members of the agile community may argue
that the approach is non-conforming with “working software over comprehensive
documentation” [1]. Therefore, we can consider this a weakness and strength at
the same time. Another strength is that we are able to generate architecture
visualizations on different levels of abstraction out of the DSL-based models.
Communicating software architecture always requires different perspectives and
levels of abstraction depending on the audience. The “model-code” gap [12] can
be considered a weakness of DSL- and generator-based approaches is general.
Generated code typically changes and the original architecture descriptions tend
to become outdated quickly. In addition, the approach requires an Integrated De-
velopment Environment (IDE) with editor support. This can be costly, especially
if multiple IDEs have to be supported. However, we still consider the approach
based on DDD future-proof, since technology-independent domain modeling is
always relevant in software engineering. The presented approach is independent
of any programming languages, architectural styles, or frameworks.

7 Summary and Outlook

In our previous paper [23] we presented Context Mapper, our approach to de-
scribe integration architectures and service decompositions in terms of strategic
DDD patterns. As our research contributions, we proposed a) a meta-model and
semantic rules based on the DDD patterns aiming for a concise interpretation
of the patterns and how they can be combined, and b) a DSL and supporting
tools to model Bounded Contexts and their relationships as well as Aggregates.

This extended version of the original paper introduced language improve-
ments and enhancements that allow users to start modeling on the level of use
cases and user stories. Additionally, we introduced model transformations that
a) support Context Mapper users in modeling DDD Subdomains and Bounded
Contexts rapidly, and b) illustrate how the Context Mapper DSL (CML) can
be used as a foundation for systematic service decomposition approaches. The
Context Mapper tool further allows to generate code, visual Context Maps and
other architecture diagrams (not presented in this paper). In addition, the rapid
prototyping transformations demonstrate how we apply and validate the DSL
in practical cases.

Besides the rapid prototyping transformations we implemented several Ar-
chitectural Refactorings (ARs)24 (discussed in another paper [24]) that support
the users in improving the architecture models iteratively.

Validation results collected via implementation, action research, and case
studies suggest that Context Mapper can support architects in their modeling
work and decision making effectively and efficiently. The existing results and

24 https://contextmapper.org/docs/architectural-refactorings/

https://contextmapper.org/docs/architectural-refactorings/

Domain-driven Architecture Modeling and Rapid Prototyping 23

user feedback further led to the syntax enhancements presented in this paper.
However, additional validation activities will be required to finally confirm our
hypothesis that Context Mapper can be beneficial in agile architecting and mod-
eling environments.

In our future work we plan to further improve the language and tool so
that software architects can evolve their designs with additional transformations
and architecture refactorings [41] in an iterative and incremental manner. A
reverse engineering library shall close the “model-code” gap [12] and provide
model generation from existing or generated source code. This shall ease the
application of the tool in brownfield projects that plan to refactor monoliths
to microservices and/or migrate to the cloud. The integration of a systematic
service decomposition approach similar to Service Cutter [15] shall propose new
decompositions (Context Maps) that improve coupling and cohesion between
contexts automatically.

References

1. Agile Alliance: Agile manifesto. https://www.agilealliance.org/agile101/the-agile-
manifesto/ (2001)

2. Agile Alliance: User story template. https://www.agilealliance.org/glossary/user-
story-template/ (2001)

3. Avison, D.E., Lau, F., Myers, M.D., Nielsen, P.A.: Action research. Commun. ACM
42(1), 94–97 (Jan 1999). https://doi.org/10.1145/291469.291479

4. Baresi, L., Garriga, M., De Renzis, A.: Microservices identification through in-
terface analysis. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.) Service-
Oriented and Cloud Computing. pp. 19–33. Springer International Publishing,
Cham (2017)

5. Brandolini, A.: Strategic domain driven design with context mapping. https:
//www.infoq.com/articles/ddd-contextmapping (2009)

6. Brown, S.: The C4 model for visualising software architecture: Context, Containers,
Components and Code. https://www.infoq.com/articles/C4-architecture-model/
(2018)

7. Cheesman, J., Daniels, J.: UML Components: A Simple Process for Specifying
Component-Based Software. Addison-Wesley Longman Publishing Co., Inc. (2000)

8. Cockburn, A.: Writing Effective Use Cases. Agile Software Development Series,
Addison-Wesley (2001)

9. Conway, M.: Conway’s law (1968)

10. Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley (2003)

11. Evans, E.: Domain-driven design reference: Definitions and pattern summaries.
https://domainlanguage.com/ddd/reference (2015)

12. Fairbanks, G.: Just enough software architecture: a risk-driven approach. Marshall
& Brainerd (2010)

13. Francesco, P.D., Lago, P., Malavolta, I.: Migrating towards microser-
vice architectures: An industrial survey. In: 2018 IEEE International
Conference on Software Architecture (ICSA). pp. 29–2909 (April 2018).
https://doi.org/10.1109/ICSA.2018.00012

https://doi.org/10.1145/291469.291479
https://www.infoq.com/articles/ddd-contextmapping
https://www.infoq.com/articles/ddd-contextmapping
https://domainlanguage.com/ddd/reference
https://doi.org/10.1109/ICSA.2018.00012

24 Stefan Kapferer and Olaf Zimmermann

14. Gouigoux, J., Tamzalit, D.: From monolith to microservices: Lessons learned on an
industrial migration to a web oriented architecture. In: 2017 IEEE International
Conference on Software Architecture Workshops (ICSAW). pp. 62–65 (April 2017).
https://doi.org/10.1109/ICSAW.2017.35

15. Gysel, M., Kölbener, L., Giersche, W., Zimmermann, O.: Service cutter: A sys-
tematic approach to service decomposition. In: Aiello, M., Johnsen, E.B., Dustdar,
S., Georgievski, I. (eds.) Service-Oriented and Cloud Computing. pp. 185–200.
Springer International Publishing, Cham (2016)

16. Habegger, M., Schena, M.: Cloud-Native Refactoring in a mHealth Scenario. Bach-
elor thesis, University of Applied Sciences of Eastern Switzerland (HSR FHO)
(2019)

17. Hassan, S., Ali, N., Bahsoon, R.: Microservice ambients: An architectural
meta-modelling approach for microservice granularity. In: 2017 IEEE Interna-
tional Conference on Software Architecture (ICSA). pp. 1–10 (April 2017).
https://doi.org/10.1109/ICSA.2017.32

18. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (2003)

19. Josélyne, M.I., Tuheirwe-Mukasa, D., Kanagwa, B., Balikuddembe, J.: Partition-
ing microservices: A domain engineering approach. In: Proceedings of the 2018
International Conference on Software Engineering in Africa. pp. 43–49. SEiA ’18,
ACM, New York, NY, USA (2018). https://doi.org/10.1145/3195528.3195535

20. Kapferer, S.: Architectural Refactoring of Data Access Security. Semester thesis,
University of Applied Sciences of Eastern Switzerland (HSR FHO) (2017), https:
//eprints.hsr.ch/564

21. Kapferer, S.: A Domain-specific Language for Service Decomposition. Term
project, University of Applied Sciences of Eastern Switzerland (HSR FHO) (2018),
https://eprints.hsr.ch/722

22. Kapferer, S.: Model Transformations for DSL Processing. Term project, Univer-
sity of Applied Sciences of Eastern Switzerland (HSR FHO) (2019), https:
//eprints.hsr.ch/819/

23. Kapferer., S., Zimmermann., O.: Domain-specific language and tools for strate-
gic domain-driven design, context mapping and bounded context modeling. In:
Proceedings of the 8th International Conference on Model-Driven Engineering
and Software Development - Volume 1: MODELSWARD,. pp. 299–306. INSTICC,
SciTePress (2020). https://doi.org/10.5220/0008910502990306

24. Kapferer, S., Zimmermann, O.: Domain-driven service design – context modeling,
model refactoring and contract generation. In: Proc. of the 14th Symposium and
Summer School On Service-Oriented Computing - SummerSoC (September 13-19,
2020). Springer Communications in Computer and Information Science (CCIS) (to
appear)

25. Kruchten, P.: The 4+1 view model of architecture. IEEE Software 12(6), 42–50
(1995). https://doi.org/10.1109/52.469759

26. Landre, E., Wesenberg, H., Rønneberg, H.: Architectural improvement by use
of strategic level domain-driven design. In: Companion to the 21st ACM
OOPSLA. pp. 809–814. OOPSLA ’06, ACM, New York, NY, USA (2006).
https://doi.org/10.1145/1176617.1176728

27. Le, D.M., Dang, D.H., Nguyen, V.H.: Domain-driven design using meta-
attributes: A dsl-based approach. In: 2016 Eighth International Confer-
ence on Knowledge and Systems Engineering (KSE). pp. 67–72 (Oct 2016).
https://doi.org/10.1109/KSE.2016.7758031

https://doi.org/10.1109/ICSAW.2017.35
https://doi.org/10.1109/ICSA.2017.32
https://doi.org/10.1145/3195528.3195535
https://eprints.hsr.ch/564
https://eprints.hsr.ch/564
https://eprints.hsr.ch/722
https://eprints.hsr.ch/819/
https://eprints.hsr.ch/819/
https://doi.org/10.5220/0008910502990306
https://doi.org/10.1109/52.469759
https://doi.org/10.1145/1176617.1176728
https://doi.org/10.1109/KSE.2016.7758031

Domain-driven Architecture Modeling and Rapid Prototyping 25

28. Mazlami, G., Cito, J., Leitner, P.: Extraction of microservices from monolithic
software architectures. In: 2017 IEEE International Conference on Web Services
(ICWS). pp. 524–531 (June 2017). https://doi.org/10.1109/ICWS.2017.61

29. Parnas, D.L.: On the criteria to be used in decomposing sys-
tems into modules. Commun. ACM 15(12), 1053–1058 (Dec 1972).
https://doi.org/10.1145/361598.361623

30. Pautasso, C., Zimmermann, O., Amundsen, M., Lewis, J., Josuttis, N.: Microser-
vices in practice, part 1: Reality check and service design. IEEE Software 34(1),
91–98 (Jan 2017). https://doi.org/10.1109/MS.2017.24

31. Plöd, M.: DDD Context Maps - an enhanced view. https://speakerdeck.com/
mploed/context-maps-an-enhanced-view (2018)

32. Plöd, M.: Hands-on Domain-driven Design - by example. Leanpub (2019)
33. Rademacher, F., Sorgalla, J., Sachweh, S.: Challenges of domain-driven microser-

vice design: A model-driven perspective. IEEE Software 35(3), 36–43 (May 2018).
https://doi.org/10.1109/MS.2018.2141028

34. Rademacher, F., Sachweh, S., Zündorf, A.: Towards a UML profile for domain-
driven design of microservice architectures. In: Cerone, A., Roveri, M. (eds.) Soft-
ware Engineering and Formal Methods. pp. 230–245. Springer International Pub-
lishing, Cham (2018)

35. Shaw, M.: Writing good software engineering research papers: Minitutorial. In:
Proceedings of the 25th International Conference on Software Engineering. pp.
726–736. ICSE ’03, IEEE Computer Society, Washington, DC, USA (2003), http:
//dl.acm.org/citation.cfm?id=776816.776925

36. Stal, M.: Software architecture refactoring. In: Tutorial in The International Con-
ference on Object Oriented Programming, Systems, Languages and Applications
(2007)

37. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: Eclipse Modeling
Framework. Eclipse Series, Pearson Education (2008)

38. Tune, N., Millett, S.: Designing Autonomous Teams and Services: Deliver Contin-
uous Business Value Through Organizational Alignment. O’Reilly Media (2017)

39. Vernon, V.: Implementing Domain-Driven Design. Addison-Wesley Professional,
1st edn. (2013)

40. Wohlin, C., Runeson, P., Hst, M., Ohlsson, M.C., Regnell, B., Wessln, A.: Exper-
imentation in Software Engineering. Springer Publishing Company (2012)

41. Zimmermann, O.: Architectural refactoring for the cloud: a decision-
centric view on cloud migration. Computing 99(2), 129–145 (2017).
https://doi.org/10.1007/s00607-016-0520-y

42. Zimmermann, O.: Microservices tenets. Computer Science - Research and Devel-
opment 32(3), 301–310 (Jul 2017). https://doi.org/10.1007/s00450-016-0337-0

43. Zimmermann, O., Stocker, M., Lübke, D., Pautasso, C., Zdun, U.: Introduction to
Microservice API Patterns (MAP). In: Cruz-Filipe, L., Giallorenzo, S., Montesi,
F., Peressotti, M., Rademacher, F., Sachweh, S. (eds.) Joint Post-proceedings of
the First and Second International Conference on Microservices (Microservices
2017/2019). OpenAccess Series in Informatics (OASIcs), vol. 78, pp. 4:1–4:17.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2020).
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.4

NOTICE: This is the author’s version of a work published in
the Springer book series Communications in Computer and Information
Science. The final authenticated version is available online
at https://doi.org/10.1007/978-3-030-67445-8 11.

https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1145/361598.361623
https://doi.org/10.1109/MS.2017.24
https://speakerdeck.com/mploed/context-maps-an-enhanced-view
https://speakerdeck.com/mploed/context-maps-an-enhanced-view
https://doi.org/10.1109/MS.2018.2141028
http://dl.acm.org/citation.cfm?id=776816.776925
http://dl.acm.org/citation.cfm?id=776816.776925
https://doi.org/10.1007/s00607-016-0520-y
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.4
https://link.springer.com/bookseries/7899
https://link.springer.com/bookseries/7899
https://doi.org/10.1007/978-3-030-67445-8_11

	Domain-driven Architecture Modeling and Rapid Prototyping with Context Mapper

