CONTEXT MAPPER:

DSL AND TOOLS FOR DOMAIN-
DRIVEN SERVICE DESIGN —
BOUNDED CONTEXT MODELING
AND MICROSERVICE
DECOMPOSITION

JUG St. Gallen, Switzerland
September 10, 2019

Stefan Kapferer
Prof. Dr. Olaf Zimmermann (ZIO)
HSR FHO

stefan.kapferer@hsr.ch
ozimmerm@hsr.ch

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

FHO Fachhochschule Ostschweiz

Abstract

Service-oriented architectures and microservices have gained much attention in recent
years; many companies adopt them in order to increase agility, maintainability and
scalability of their systems. Decomposing an application into multiple independently
deployable, appropriately sized services is challenging. With strategic patterns such as
Bounded Context and Context Map, Domain-Driven Design (DDD) can support software
architects and domain experts during service decomposition. However, existing
architecture description languages, methods and tools do not support strategic DDD
sufficiently. As a consequence, different interpretations and opinions regarding pattern
applicability can be observed, and it is not always clear how the patterns can be
combined. Context modeling is an ad-hoc, error-prone activity.

In this talk we present Context Mapper, an open source project providing a Domain-
Specific Language (DSL) for DDD. Aiming for a clear and concise interpretation of the
patterns and their combinations, we distilled a meta-model of the DDD patterns from
community input. The DSL provides a light syntax to express the patterns and model
DDD context maps. An Eclipse editor supports syntax highlighting, code completion,
and model validation. Other tools allow designers to refactor and continuously evolve
the models and generate lower-level artifacts such as service contracts. DSL and
supporting tools promote iterative, incremental modeling and agile practices.

O HSR
HOCHSCHULE FUR TECHNIK

. . RAPPERSWIL Page 2
FHO Fachhochschule Ostschweiz © Stefan Kapferer, Olaf Zimmermann, 2019

INSTITUTE FOR
SOFTWARE

http://contextmapper.github.io/

Session Outline

m Presentation Part 1 (20 mins)

Motivation

Brief introduction to Microservice Architectures (MSA)
Domain-Driven Design (DDD) and service decomposition
Context Mapper overview

m Context Mapper Demo (20 mins)

m Presentation Part 2 (20 mins)

Architectural refactoring

Next steps in the BizDevOps tool & practice chain:

Microservice Domain-Specific Language (MDSL)
Microservice API Patterns (MAP)

B Q&A (15 mins)
Input and feedback appreciated — this is ongoing research!

M HSR
HOCHSCHULE FUR TECHNIK © INSTITUTE FOR
B E e Page 3 .

FHO Fachhochschule Ostschweiz © Stefan Kapferer, Olaf Zimmermann, 2019. SOFTWARE

Session Outline

m Presentation Part 1 (20 mins)

Motivation

Brief introduction to Microservice Architectures (MSA)
Domain-Driven Design (DDD) and service decomposition
Context Mapper overview

m Context Mapper Demo (20 mins)

m Presentation Part 2 (20 mins)

Architectural refactoring

Next steps in the BizDevOps tool & practice chain:

Microservice Domain-Specific Language (MDSL)
Microservice API Patterns (MAP)

B Q&A (15 mins)
Input and feedback appreciated — this is ongoing research!

M HSR
HOCHSCHULE FUR TECHNIK © INSTITUTE FOR
B E e Page 4 .

FHO Fachhochschule Ostschweiz © Stefan Kapferer, Olaf Zimmermann, 2019. SOFTWARE

Motivating Example: “Fictitious™ Insurance Application Landscape

m Many design issues, typically recurring

per system/team, per relationship, per interface

Customer Self-Service

t
| Designissue

| (decision required)
\

Customer
Management

Debt Collection

Data duplication and/or
on-demand exchange?
Strict/eventual consistency?

Risk Management

4

i Buy? Build? Rent? Technology?

| Vendor? Team? (Sourcing, Staffing)
\

e 4
I,,
'z -------------------- e ~‘| 'I---J' """"""""""" \‘
i Data and control flow direction? 1 | Client influence on API design and !
- I " :] System or

| Data formats (norms, transformations)? y |} stability/evolution (governance)? | Y

1 I 1 1

I Frequency of message exchange? ! API contracts and technologies? ! Dev/Ops team

\ ;L 1

N ———————————————— - - ’ N ————————————— - - .—’
- HSR NSTITUTE FOR
HOCHSCHULE FUR TECHNIK © I ITU

B E e Page 5 - SOFTWARE

FHO Fachhochschule Ostschweiz © Stefan Kapferer, Olaf Zimmermann, 2019

A Consolidated Definition of Microservices

® Microservices architectures evolved from previous incarnations of
Service-Oriented Architectures (SOAs) to promote agility and elasticity

Independently deployable, scalable and changeable services,
each having a single responsibility

Request

Modeling business capabilities message
representation

Detailed analysis: Zimmermann, O., Microservices

Tenets: Agile Approach to Service Development

and Deployment, Springer Journal of Computer

Science Research and Development (2017) Adapters
Data Ports
Domain Logic

Often deployed in lightweight containers

Encapsulating their own state, and communicating via message-based
remote APIs (HTTP, queueing), IDEALIly in a loosely coupled fashion

Facilitating polyglot programming and persistence

Leveraging DevOps practices including decentralized continuous delivery
and end-to-end monitoring (for business agility and domain observability)

M HSR
EE :AD::ESF(C;\:\:ILE FUR TECHNIK Page 6 : INSTITUTE FOR

FHO Fachhochschule Ostschweiz © Olaf Zim mermann, 20109. SOFTWARE

https://www.ifs.hsr.ch/fileadmin/user_upload/customers/ifs.hsr.ch/Home/projekte/ZIO-CHOpenDay-CCaSAWAv10p.pdf
http://rdcu.be/mJPz

Open Problem: Service Decomposition

Traditional SOA
On the Cl‘iterla TO Be Ul . . How Do Committees Invent?
Used in Decomposing 1 Melvin E. Comway
Systems into Modules Services Con 196, D s o o
D.L. Pamas Logic . Datamatmfmagazme
Carnegie-Mellon University where it appeared April, 1968,
Data .
@ Research and Development Questions

How can systems be decomposed and cut into services (forward engineering)?
How do the applied criteria and heuristics differ
from software engineering and software architecture “classics”
such as separation of concerns and single responsibility principle?

@ Which methods and practices do you use? Are they effective and efficient?

O HSR
HOCHSCHULE FUR TECHNIK

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz

Page 7

© Olaf Zimmermann, 2019.

INSTITUTE FOR
SOFTWARE

Decomposition Heuristics that do not suffice

Independent-X

B Two-pizzarule (team size) 0= Capioymen.

Scaling, Change,
Bu.s_lness_ Replacement) Polyglot
Capability-Driven Programming and
Design Persistence

®m Lines of code (in service implementation) eavieoon) /S

Architectures

(12-Factor App)
B Size of service implementation in IDE editor
and Clusterin. Delivery
Monitoring

(as part of DevOps)

m Simple if-then-else rules of thumb

E.g. “If your application needs coarse-grained services, implement a SOA,
if you require fine ones, go the microservices way” (I did not make this up!)

® Non-technical traits, including “products not projects”

?

'* What is wrong with these “metrics” and “best practice”
NY recommendations?

m) Context matters, as M. Fowler pointed out at Agile Australia 2018
(or: one size does not fit all)

HSR

HOCHSCHULE FUR TECHNIK Page 8
RAPPERSWIL

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

INSTITUTE FOR
SOFTWARE

https://martinfowler.com/articles/agile-aus-2018.html

Domain-Driven Design (DDD) to the Remedy

m Emphasizes need for modeling and communication -
(DPSARGAY

Tackling Complexit i the Heart of Sofware
y LS
|

Ubiquitous language (vocabulary) — the domain model

®m Tactic DDD - “Object-Oriented Analysis and Design
(OOAD) done right”

Emphasis on business logic in layered architecture
Decomposes Domain Model pattern from M. Fowler

2 %
Patterns for common roles, e.g. Entity, Value Object, A Lh
Repository, Factory, Service; grouped into Aggregates R .m

and Practices of
Domain-Driven Design

' DOMAIN-DRIVEN

m Strategic DDD - “agile Enterprise Architecture
and/or Portfolio Management”

Books (Selection, Reverse Chronological Order)
* M, Ploed, Hands-on Domain-diven Design - by example, Leanpub

Models have boundaries
* Domain-Driven Design: The First 15 Years, Leanpub

Teams’ SyStemS and . *# V. Vernon, DDD Distilled; a German translation is available: DDD Kompalkt
the|r r6|atI0nS ShOWh N * S, Millett with N. Tune, Patterns, Principles, and Practices of DDD, 1. Wiley &

Sons 2015
ConteXt Maps Of * V. Vaughn, Implementing D00, Addison Wesley 2014
* F. Mannescu, Domain-Driven Design Quickly (Infol e-book, 2006
Bounded Contexts inescu, Domain-Dri ian Quickly (InfoQ e-book, 2006)
- HSR NSTITUTE FOR
HOCHSCHULE FUR TECHNIK Page 9 : I ITU
B E e -4 SOFTWARE

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

https://martinfowler.com/eaaCatalog/domainModel.html

A Strategic DDD Context Map with Relationships

B Insurance scenario modelled at https://contextmapper.github.io/

Printing
Customer Self-Service A Context
Context 45>
A
U 74 U
D
. 'VC‘ U
Customer/Supplier <

Customer
Management Context

Debt Collection
Context

D
l D Shared Kernel
Risk Management \\\FOP‘M\ST ACL
Context Partnership cO .
Policy Management

Context
Bounded
Context

D: Downstream, U: Upstream; ACL: Anti-Corruption Layer, OHS: Open Host Service

M HSR
EE :AD::ESF(C;\:\:ILE FUR TECHNIK Page 10 INSTITUTE FOR

FHO Fachhochschule Ostschweiz © Stefan Kapferer, Olaf Zimmermann, 2019. SOFTWARE

https://contextmapper.github.io/
https://www.infoq.com/articles/ddd-contextmapping/
https://www.infoq.com/articles/ddd-contextmapping/
https://docs.microsoft.com/en-us/azure/architecture/patterns/anti-corruption-layer
http://www.methodsandtools.com/archive/archive.php?id=97

DDD Applied to (Micro-)Service Design

m M. Ploed is one of the “go-to-guys” here (find him on Speaker Deck)

Applies and extends DDD books by E. Evans and V. Vernon

Microservices

)
V

Domain-driven Design

Michael Plod, @bitboss

INNOQ

Context Maps

Top
Down
Microservice
Bounded Contexts
Bottom

Up

Aggregates

Reference: JUG CH presentation, Bern/CH, Jan 9, 2019

HOCHSCHULE FUR TECHNIK

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz

INSTITUTE FOR
SOFTWARE

Page 11
© Olaf Zimmermann, 2019.

https://speakerdeck.com/mploed
https://speakerdeck.com/mploed/microservices-love-domain-driven-design-version-2
https://speakerdeck.com/mploed/microservices-love-domain-driven-design-version-2

DDD Applied to (Micro-)Service Design ctd., Source:

B N. Tune and S. Millett: Designing Autonomous Teams and Services

Describe how to coevolve organizational and technical boundaries to
architect autonomous applications and teams based on DDD Bounded
Contexts and (micro-)services.

m O. Tigges: How to break down a Domain to Bounded Contexts

Presents criteria to be used to identify Bounded Contexts.

B R. Steinegger et al.: Overview of a Domain-Driven Design Approach to
Build Microservice-Based Applications

Describes a development process to build MSA applications based on the
DDD concepts, emphasizing the importance of decomposing a system in
several iterations.

B A. Brandolini: Introducing Event Storming

Proposes a workshop-based technique to analyze a domain and discover
bounded contexts, following events through the system/business process
and detecting commands, entities (and more) along the way.

M HSR
EE :AD::ESF(C;\:\:ILE FUR TECHNIK Page 12 E INSTITUTE FOR

FHO Fachhochschule Ostschweiz © Stefan Kapferer, Olaf Zimmermann, 2019. SOFTWARE

https://www.oreilly.com/library/view/designing-autonomous-teams/9781491994320/
https://speakerdeck.com/otigges/how-to-break-down-a-domain-to-bounded-contexts
https://www.semanticscholar.org/paper/Overview-of-a-Domain-Driven-Design-Approach-to-Steinegger-Giessler/c27543389bf0f9d5ac337963c474496979ef2a2d
https://leanpub.com/introducing_eventstorming

From DDD to RESTful HTTP APIs

® “Implementing DDD” book by V. Vernon (and blog posts, presentations):

No 1:1 pass-through (interfaces vs. application/domain layer)

Bounded Contexts (BCs) realized by API provider: one service APl and IDE
project for each team/system BC (a.k.a. microservice)

Agagregates supply API resources (or responsibilities) of service endpoints
Services donate top-level (home) resources in BC endpoint as well

The Root Entity, the Repository and the Factory in an Aggregate suggest
top-level resources; contained entities yield sub-resources

Repository lookups as paginated queries (GET with search parameters)

B Additional rules of thumb (from our experience and additional sources):
Master data and transactional data go to different contexts/aggregates
Creation requests to Factories become POSTs
Entity modifiers become PUTs or PATCHes
Value Objects appear in the custom mime types representing resources

M HSR
HOCHSCHULE FUR TECHNIK Page 13 : INSTITUTE FOR
B E e - SOFTWARE

© Olaf Zimmermann, 2019.

FHO Fachhochschule Ostschweiz

https://www.youtube.com/watch?v=lUCLFOISuXk
https://martinfowler.com/bliki/BoundedContext.html
https://martinfowler.com/bliki/DDD_Aggregate.html
http://gorodinski.com/blog/2012/04/14/services-in-domain-driven-design-ddd/
https://martinfowler.com/eaaCatalog/repository.html
https://microservice-api-patterns.org/
https://www.ifs.hsr.ch/index.php?id=15666&L=4

Context Mapper: A DSL for Strategic DDD

What is Context Mapper?

Context Mapper provides a DSL to create Context Maps based
on strategic Domain-driven Design (DDD). DDD with its Bounded
Contexts offers an approach for decomposing a domain or
system into multiple independently deployable (micro-)services.
With our Architectural Refactorings (ARs) we provide
transformation tools to refactor and decompose a systemin an
iterative way. The tool further allows you to generate MDSL ContextMap DDD CargoSample Map {
(micro-)service contracts providing assistance regarding how :i’g:;f}??g—m”nsc““

your system can be implemented in an (micro-)service-oriented -

architecture. In addition, PlantUML diagrams can be generated contains CargoBookingContext
to transform the Context Maps into a graphical representation. E::E:i:: Egzggizkgggtggionte“
With Service Cutter you can generate suggestions for new

services and Bounded Contexts.

CONTEXT
MAPPER

CargoBookingContext [SK]<->[SK] VoyagePlanningContext

. . CargoBookingContext [D]<-[U,OHS,PL] LocationContext
m Eclipse plugin, based on:

Xtext, ANTLR ’
Sculptor (tactic DDD DSL)

VoyagePlanningContext [D]<-[U,OHS,PL] LocationContext

SK: Shared Kernel, PL: Published Lanquage
] Creator: S Kapferer D: Downstream, U: Upstream

ACL: Anti-Corruption Layer, OHS: Open Host Service
Term projects @ HSR FHO

HSR NSTITUTE FOR
HOCHSCHULE FUR TECHNIK © I |
Page 14 °
B E e -4 SOFTWARE

FHO Fachhochschule Ostschweiz © Stefan Kapferer, Olaf Zimmel’mann, 2019

http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
https://www.infoq.com/articles/ddd-contextmapping/
https://www.infoq.com/articles/ddd-contextmapping/
https://docs.microsoft.com/en-us/azure/architecture/patterns/anti-corruption-layer
http://www.methodsandtools.com/archive/archive.php?id=97

Session Outline

m Presentation Part 1 (20 mins)

m Context Mapper Demo (20 mins)
Part 1. DSL (Editing, Validations)
Part 2: Code Generation (PlantUML, MDSL)
Part 3: Architectural Refactorings (ARS)

m Presentation Part 2 (20 mins)

Architectural refactoring

Next steps in the BizDevOps tool & practice chain:

Microservice Domain-Specific Language (MDSL)
Microservice API Patterns (MAP)

B Q&A (15 mins)

O HSR
HOCHSCHULE FUR TECHNIK Page 15

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz © Stefan Kapferer, Olaf Zimmel’mann, 2019

INSTITUTE FOR
SOFTWARE

Context Mapper: Meta-Model and Semantic Rules

m Goal: provide clear and concise interpretation of the strategic DDD
patterns — and valid combinations of them

Context Map shows all relevanti= Bounded Context | 1..* implements part ofte 1.% Subdomain
1 1.* ‘
has multiple

Core Domain

«abstract»
Bounded Context

Relationship

Downstream has

«abstract»

«abstract»

«abstract»
Upstream Role

1
Upstream has
1

Upstream-Downstream

Symmetric Relationship
Relationship

0.* 0.1

«abstract»
| ‘ Relationship Role

Customer/Supplier Generic
Relationship

Upstream/D ownstream
Relationship

«abstract»

Partnership Shared Kernel

Downstream Role

1 2 -
Responsibility
shows relationships has multiple
\j \/ |

Supporting
Subdomain

Generic Subdomain

Published Language
(PL)

Open Host Service
{OHS)

lAnticorruption Layer
{ACL)

Conformist

Reference: https://contextmapper.qithub.io/docs/lanquage-model/

O HSR
HOCHSCHULE FUR TECHNIK Page 16 I

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz

© Stefan Kapferer, Olaf Zimmermann, 2019.

NSTITUTE FOR
SOFTWARE

https://contextmapper.github.io/docs/language-model/

Context Mapper: DSL implements Meta-Model and Semantics

m A Domain-Specific Language (DSL) for DDD:
Formal, machine-readable DDD Context Maps via editors and validators
Model/code generators to convert models into other representations
Model transformations for refactorings (e.g., “Split Bounded Context”)

context-mapper-examples - context-mapper-examples/src/main/resources/insurance-example/Insurance-Example_Context-Map.cml - Eclipse IDE - @ x

File Edit Navigate Search Project Run Window Help

[m [ERER-ERBE -AaR BA R RA REN- - 4 A R rowid Quick Ac S I
Package Explorer = " © @ Insurance-Example_Context-Map.cml 2 " 5 ETasklist® =G
= ° 2-ContextMap InsuranceContextMap { *E% ® whB -
~ & context-mapper-examples [contex 2 type = SYSTEM_LANDSCAPE
) 4 state = TO_BE
- @ src/main/resources 5 Find » All » Activat...
» s architectural-refactorings 6 /* Add bounded contexts to this context map: */
+ s ddd-sample 7 contains CustomerManagementContext
! P 8 contains CustomerSelfServiceContext
~ @ insurance-example 9 contains PrintingContext
+ crimages 16 cnnta%ns Pgll(yManagementEnntext
11 contains RiskManagementContext
®Insurance-Example_Context-| 15 contains DebtCollection
®Insurance-Example_Context-| 13
S — ample_Context t:‘& /* Define the context relationships: */
5
@Insurance-Example_Team-M:| 15- CustomerSelfServiceContext [D,C]<-[U,S] CustomerManagementContext : Customer Fron
% README.md 17 exposedAggregates = Customers
.) 18 }
+ = JRE System Library [J E-18]|| g = Outline 1 =5
- bin 20= CustomerManagementContext [D,ACL]<-[U,0HS,PL] PrintingContext { 8%
N 21 implementationTechnology = "SOAP"
E dl - -|
*ergracie 2 downstreanRights = INFLUENCER Insurance-Example-Con
* &SI 23 exposedAggregates = Printing - = InsuranceContextMap
+&src-gen :51 = Customer_Frontend
#build.gradle 26- PrintingContext [U,0HS,PL]->[D,ACL] PolicyManagementContext { » '+ CustomerManagement
gradlew 27 implementationTechnology = “SOAP" » = CustomerSelfServiceC
gradlew.bat 32) exposedAggregates = Printing + 1« PrintingContext
LICENSE 30 » = PolicyManagementCor
7 README.md 31 RiskManagementContext [P]<->[P] PolicyManagementContext { » 1= RiskManagementCont
3: implementationTechnology = "RabbitMQ"
~ settings.gradle 33 } P 9 » = DebtCollection
34 » = InsuranceDomain
35 PolicyManagementContext [D,CF]<-[U,0HS,PL] CustomerManagementContext {
36 implementationTechnoloav = "RESTful HTTP"
£ Problems # -« Javadoc & Declaration e v =8
0 items

Description

Writable Insert 1:1

O HSR
. . HOCHSCHULE FUR TECHNIK Page 17

RAPPERSWIL
FHO Fachhochschule Ostschweiz © Stefan Kapferer, Olaf Zimmel’mann, 2019

INSTITUTE FOR
SOFTWARE

Context Mapper: Generators (DDD DSL as Input)

m PlantUML generator

Generate graphical
representations of model

W Service Cutter input
generator

Use structured approach
to identify service
Cand |dateS Service Cutter

i)
le_Context-Map j | C Recalculate | & Export JSON

Term project/bachelor m B

Cohesiveness Criteria

thesis at HSR FHO _ |

e]

B MDSL service contract : :
generator j

. e Availability Criticality j

Generate technology- f— :
agnostic (micro-)service - ;
contracts from Bounded eIl

Security Gonstraint W j

Contexts/Aggregates

http://servicecutter.github.io/

O HSR
HOCHSCHULE FUR TECHNIK Page 18

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz © Stefan Kapferer, Olaf Zimmel’mann, 2019

INSTITUTE FOR
SOFTWARE

http://plantuml.com/
http://servicecutter.github.io/
https://socadk.github.io/MDSL/
http://servicecutter.github.io/

Session Outline

m Presentation Part 1 (20 mins)
m Context Mapper Demo (20 mins)

B Presentation Part 2 (20 mins)

Architectural refactoring

Next steps in the BizDevOps tool/practice chain:

Microservice Domain-Specific Language (MDSL)
Microservice API Patterns (MAP)

® Q&A (15 mins)

O HSR
HOCHSCHULE FUR TECHNIK

B caerersw Page 19
FHO Fachhochschule Ostschweiz © Stefan Kapferer, Olaf Zimmel’mann, 2019

INSTITUTE FOR
SOFTWARE

Open Problem: Refactoring to Microservices

Traditional SOA

Users .

Applications - Services

Discrete Applications gacket of Services
(Two or Three Tiers)

-t

ul

Logic

-

Data

@ Research and Development Questions

How to migrate a modular monolith to a services-based cloud application
(a.k.a. cloud migration, brownfield service design)?
Can “micro-migration/modernization” steps be called out?

Q' Which techniques and practices do you employ? Are you content with them?

O HSR
HOCHSCHULE FUR TECHNIK

BN ceeeersw Page 20
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

INSTITUTE FOR
SOFTWARE

Code Refactoring vs. Architectural Refactoring

m Refactoring are “small behavior-preserving transformations” aus.
(M. Fowler 1999) =
RU‘»\CTORH\G Tnline... Alt+Shift+1

OF ExisTING CoDE Convert Member Type to Top Level..

m Code refactorings such as “extract method”:
Operate on Abstract Syntax Tree (AST)

Convert Local Variable to Field...

Exract Superclass...
Extract Interface...
Use Supertype Where Possible...

Based on compiler theory, so well understood and e
automation possible (e.g., in Eclipse Java/C++) e

Introduce Parameter...

Encapsulate Field...

Catalog and commentary:
http://refactoring.com/ and https://refactoring.quru/

Generalize Declared Type...

Infer Generic Type Arguments.
Migrate JAR File...
Create Script..

Apply Script...
History...

m Architectural refactorings are different:

Resolve one or more bad architectural smells, have impact on quality
attributes

Bad architectural smell: suspect that architecture is no longer adequate (“good
enough”) under current requirements and constraints (may differ from original ones)

Are carriers of reengineering knowledge (patterns?)
Can only be partially automated

O HSR
HOCHSCHULE FUR TECHNIK Page 21

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

INSTITUTE FOR
SOFTWARE

http://refactoring.com/
https://refactoring.guru/

From Biz and Dev to Ops: Bad Smells and Refactorings

In scope of DDD and Context Mapper

(packageeachserviceina
separate container

multiple services
in one container

—
'

[independent deployability

no APl gateway add APl gateway

NP NI

}

[horizontal scalability add service discovery

endpoint-based service
interactions

\

L N D W N N N N W W

add message router

\

add message broker

add circuit breaker

[isolation of failures J (wobbly service interactions
use timeouts
add bulkhead
ESB misuse J (rightsize ESB
split database
[decentralisation shared persistence add data manager

merge services

single-layer teams split teams by service

/\

N’

—~—~

Design principles, architectural smells and refactorings
for microservices: Amultivocalreview

i Reference: Brogi, A., Neri D., Soldani, J., Zimmermann, O., Design Principles, Architectural
Smells and Refactorings for Microservices: A Multivocal Review. CoRR abs/1906.01553
and Springer SICS (2019) (online, report PDF, short presentation)

HSR
HOCHSCHULE FUR TECHNIK Page 22 : INSTITUTE FOR
RAPPERSWIL - SOFTWARE

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

https://rdcu.be/bQfr6
https://arxiv.org/pdf/1906.01553
https://www.summersoc.eu/wp-content/uploads/2019/06/4.10-Davide-Neri-Design-Principles-Architectural-Smells-Refactorings-For-Microservices.pdf

Context Mapper: Refactor by Decomposition Criteria (DC)?

m As afirst step, we collected Decomposition Criteria (DC):
From literature and own experience; criteria catalog in Service Cutter

Service Cutter CC- ()
Service Cutter CC- 2: Semantic Service Cutter CC- p
13: Network Proximity 12: Predefined By ice| Cutter Gl
Traffic Similarity (read/written in Service Constraint) 1: Nanoentities
J’%, with same
_— ’
e lifecycle and
Service Cutter CC- identity
10: Mutability ——
Existing Services / _—
Business Entities —
(Legacy) L —
Objects J p

11: Storage

Service Cutter CC-
Similarity

Service Cutter CC-
7: Availability
Criticality

-

Service Cutter CC- |
6: Consistency
Criticality
_—— " Y
| ~
|

\ Service Cutter CC- stuff

\- 9: Consistency

— Constraint
(Aggregates)

Reference: Service Decomposition as a Series of
Architectural Refactorings, Stefan Kapferer, student
research project HSR FHO 2019 (thesis PDF)

Separate domain
code from "tech"-

4: Structural
Volatility

Design decisions | -

change (Parnas) 3 Eaetrh:
: Conten

which are likely to (
{ Volatility

\
\ \ Different business
areas &

Separation of
Input / Output / \-‘
Processing

| _—

.

Not covered in ‘
SENICE Cutter

, 16: Security
Service Cutter CC- Constraint

15: Security

(Service Cutter CC-
14: Security

Dntextualltf

Criticality

Service Cutter CC-

Service Cutter CC-

development — - " Service Cutter CC-
~ teams 3: Shared owner
Service Cutter CC-

=3 |

O HSR
HOCHSCHULE FUR TECHNIK

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz

Page 23 —
©

© Stefan Kapferer, Olaf Zimmermann, 2019.

INSTITUTE FOR
SOFTWARE

https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria
https://eprints.hsr.ch/784/

Context Mapper: Architectural Refactorings (ARS)

® Architectural Refactorings (ARSs) T
then derived from mined/observed o i o
Decomposition Criteria (DC) TRy G o G
. . ?& . Use Open With
Compiled from literature and 5 e s
own experience B e L
100- Entity Us 7°pyteua”e ame .
Decompose (Spllt, eXtraCt) %E% ::E ontextMapper.Refactor = Extract Aggregates by Volatility
and compose (merge) DDD S T e Bt
bounded contexts and wy
aggregates.

Selected Decomposition Criteria:

|DC-1: Business entities (which belong together)

| DC-2: Use Cases

Derived Architectural Refactorings:

————»{AR-1: Spiit Aggregate by Entities |

'—>|AR-2: Split Bounded Context by Use Cases |

|DC-3: Business areas & development teams

|DC-7: Likelihood for change (volatility)

———|AR-3: Spiit Bounded Context by Owner |

|—>|AR-4: Extract Aggregates by Volatility |

|DC-{8-12}: Generalized non-functional requirement

Reference: Service Decomposition as a Series of Architectural Refactorings,

Stefan Kapferer, student research project HSR FHO 2019 (thesis PDF)

AR-5: Extract Aggregates by Cohesion |

AR-6: Merge Aggregates |

AR-7: Merge Bounded Contexts |

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL Page 24

FHO Fachhochschule Ostschweiz © Stefan Kapferer, Olaf Zimmermann, 2019

INSTITUTE FOR
SOFTWARE

https://eprints.hsr.ch/784/

How to find suited granularities and achieve loose coupling?

context

We have decided to go the SOA and/or microservices way. We use DDD for
domain modeling and agile practices for requirements elicitation.

@ Research and Development Problems:

How to identify/specify an adequate number of APl endpoints and operations?

How to design message representation structures
so that API clients and API providers are loosely coupled
and meet their (non-)functional requirements IDEALIy?

Which patterns, principles, and practices do you use
(code first, contract first)? Do they work well?

O HSR
HOCHSCHULE FUR TECHNIK Page 25

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

INSTITUTE FOR
SOFTWARE

Contracts in Microservice Domain-Specific Language (MDSL)

API description SpreadSheetExchangeAPI

data type CSWSpreadsheet CSVSheetTab®

m Data contract
data t C5VsheetTab {" "1 Vestring:,
T ontent™: Rows*} — Compact, technology-neutral

data type Rows {"line": ID<imt:>, .
"colunns”:Columnt} Inspired by JSON, regex

data type Column {"positicn": ID<string>,
"header": V<string:?, . .

<<Entity>> "cell”: Cell} B Endpoints and operations

data type Cell {"formula":V<string>

e Elaborate, terminology from
| Ttext™s Vestring} MAP domain model
dpoint t 5 dsheetExch Endpoint .
exposes o / Abstraction of REST resource

operation uploadCsWFile
expecting payload CSVSpreadsheet
delivering payload "successCode”:V<bool:

Abstraction of WS-* concepts

operation downloadCSWFile " API Cllent’ prOVIder’ gateway’
expecting payload ID governance (SLA, version, ...)

delivering payload CSVSpreadsheet
reporting error "SheetNotFound™

API provider SpreadSheetExchangefAPIProvider

offers SpreadSheetExchangeEndpoint How does this notation compare .
o?
APT client SpreadSheetExchangeAPIClient to Swaggel’/JSON SChema
consumes SpreadSheetExchangeEndpoint N¥
and WSDL/XSD?

Reference: https://socadk.qgithub.io/MDSL/index

O HSR
HOCHSCHULE FUR TECHNIK Page 26

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

INSTITUTE FOR
SOFTWARE

https://socadk.github.io/MDSL/index

Microservice API Patterns (MAP) Categories

m |dentification Patterns:

DDD as one practice to
find candidate endpoints
and operations

Quality Patterns

How can an API provider achieve
a certain level of quality of the
offered APL, while at the same
time using its available resources
in a cost-effective way?

How can the quality tradeoffs be

communicated and accounted

for?

READ MORE —>

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

FHO Fachhochschule Ostschweiz

/ Microservice APl \

HSR Patterns (MAP)

Foundation Patterns

What type of (sub-)systems and

components are integrated?

Where should an API be

accessible from?

How should it be documented?

Responsibility Patterns

Which is the architectural role
played by each API endpoint and
its operations?

How do these roles and the
resulting responsibilities impact
(micro-)service size and

granularity?

READ MORE =

Structure Patterns

What is an adequate number of
representation elements for

request and response messages?
How are these elements

structured?

How can they be grouped and
annotated with usage

information?

READ MORE =

B Evolution Patterns:

Recently workshopped
(EuroPLoP 2019)

http://microservice-api-patterns.org

Page 27
© Olaf Zimmermann, 2019.

SOFTWARE

INSTITUTE FOR

http://microservice-api-patterns.org/

Microservices API Patterns (MAP): Patterns by Category
r \ O Y
Quality

Responsibility Structure

Endpoint Roles Representation Elements Quality Management and Governance

Processing Resource

Atomic Parameter API Key EurOPLOP 2018

@ Information Holder Resource Atomic Parameter List m Rate Limit
Evolution
Version Identifier Hi:' Hf' Two In Production vi.i|| Limited Lifetime Guarantee
|
P §
1 Semantic Versioning %] Hf' Aggressive Obsolescence vi.1 || Eternal Lifetime Guarantee
*®
. .
‘?y %' Experimental Preview EuroPLoP 2019
A A
N
Transactional Data Holder Annotated Parameter Collection Reference Management
Master Data Holder Context Representation Embedded Entity
Static Data Holder Pagination Eu rOPLOP 2017 Linked Information Holder
J g\ Y
/ \ http://microservice-api-patterns.org
Microservice API
Patterns (MAP
M HSR (MAP) <
HOCHSCHULE FUR TECHNIK © INSTITUTE FOR
B E e Page 28 ®
e SOFTWARE

© Olaf Zimmermann, 2019.

FHO Fachhochschule Ostschweiz

http://microservice-api-patterns.org/

Vision: Agile Tools for BizDevOps (in DDD and MSA Context)

Selected (Agile) Practices (our focus here)

Tools (our proposal)

Bi Enterprise Architecture/SAFe - E: M
1z Strateglc DDD (System Decomposition) ™ ontext Mapper
User Story Telling, Mapping, Splitting Bus_lness as L_Jsual (BaU):
Event Storming, Tactic DDD Whlt_eboard/ f!|pchart, C4,
’ drawing tool, issue tracker
Dev l MDSL Editor & Linter
: API Design: abstract/conceptual, . (with MAP Decorators)
platform-specific (contract first, code first) Open API Specification (f..a.
l Swagger), ASyncAPI, ...
. . T BaU e.g. Spring Boot, Spring
Service Implementation and Integration MVC, RabbitMO, Kafka, etc.
Ops BaU, e.g. GitLab, Cloud
CI/CD Plpe|InIT§] Monitoring, ... tools. Docker, Kubernetes
B HSR
EE :Ao:::ﬂcswll.-s FUR TECHNIK Page 29 : INSTITUTE FOR

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

SOFTWARE

DDD Context Map for our Tools

ContextMapper

£]

Support for Strategic and Tactic
DDD

BoundedContextAndAggregatesToAPIEndpoints

APIEndpaintsTORESTIUHT TPCantract
7

!
"use
¢
/
i

]
SwaggerToals

Editor, test tools, code generators
for Open API Specification 3.0

|
|
use
|
|

]
MDSLEditar

Support for Microservice Domain-Specific
Language (MDSL)

[
[
juse

APIEndpaintsTaWgbServicePart Type

WSDL_XSD_Taols

£]

Web Sewices and XML Schema Tools B“

TOBEAHHOLNT\CEU

This PlantUML.: generated with

CONTEXT
MAPPER

OtherTools

gRPC, GQL Schema Language, AsyncAPI
(wrapping Kafka, RabbitMQ, etc.),
to be decided

O HSR

HOCHSCHULE FUR TECHNIK
. . RAPPERSWIL

FHO Fachhochschule Ostschweiz

Page 30

© Stefan Kapferer, Olaf Zimmermann, 2019.

INSTITUTE FOR
SOFTWARE

Summary and Outlook

m Microservices have many predecessors (evolution not revolution)

Implementation approach for, and sub-style of, SOA (7 tenets)

More emphasis on autonomy and decentralization
(of decisions, of data ownership), less vendor-driven

Automation advances and novel target environments

m Context Mapper (open source/term thesis projects @ HSR)

Tool support to evolve models iteratively (ARS)

DSL for modeling strategic DDD Context Maps :
PlantUML, Service Cutter, and MDSL generation

m Microservice Domain-Specific Language (MDSL) for service contracts

m Microservice API Patterns (MAP) language & website

Quality Management and
Governance
20+ patterns, sample implementation, tutorial 5 vy
Thank you very much! Let’s move on to Q&A and discussion... iV
B HSR
EE :AD::ESF(C;\:\:ILE FUR TECHNIK Page 31 e INSTITUTE FOR

FHO Fachhochschule Ostschweiz © Stefan Kapferer, Olaf Zimmermann, 2019. SOFTWARE

https://microservice-api-patterns.org/

Feedback appreciated...

® Did we catch the essence of strategic DDD (context mapping)?
m Is the DDD DSL expressive enough, but also easy to understand?

®m [s anything missing in terms of functionality?

Which decomposition criteria do you use when cutting/carving services?
Which architectural refactorings would you like to see in future versions?

Which model transformations and code generators would be valuable?
E.g. should we look into reverse transformations (from code to DSL)?

m Can you envision to apply Context Mapper, MDSL, MAP in practice?

Do tools and notations have the potential to improve productivity & quality?
What are critical success factors for adoption (NFRs)?

m Which API design patterns and contract language features are missing?

O HSR
. . HOCHSCHULE FUR TECHNIK Page 32

RAPPERSWIL
FHO Fachhochschule Ostschweiz © Stefan Kapferer, Olaf Zimmermann, 2019

INSTITUTE FOR
SOFTWARE

