
JUG St. Gallen, Switzerland

September 10, 2019

CONTEXT MAPPER:

DSL AND TOOLS FOR DOMAIN-

DRIVEN SERVICE DESIGN –

BOUNDED CONTEXT MODELING

AND MICROSERVICE

DECOMPOSITION

Stefan Kapferer

Prof. Dr. Olaf Zimmermann (ZIO)

HSR FHO

stefan.kapferer@hsr.ch

ozimmerm@hsr.ch

Abstract

Service-oriented architectures and microservices have gained much attention in recent

years; many companies adopt them in order to increase agility, maintainability and

scalability of their systems. Decomposing an application into multiple independently

deployable, appropriately sized services is challenging. With strategic patterns such as

Bounded Context and Context Map, Domain-Driven Design (DDD) can support software

architects and domain experts during service decomposition. However, existing

architecture description languages, methods and tools do not support strategic DDD

sufficiently. As a consequence, different interpretations and opinions regarding pattern

applicability can be observed, and it is not always clear how the patterns can be

combined. Context modeling is an ad-hoc, error-prone activity.

In this talk we present Context Mapper, an open source project providing a Domain-

Specific Language (DSL) for DDD. Aiming for a clear and concise interpretation of the

patterns and their combinations, we distilled a meta-model of the DDD patterns from

community input. The DSL provides a light syntax to express the patterns and model

DDD context maps. An Eclipse editor supports syntax highlighting, code completion,

and model validation. Other tools allow designers to refactor and continuously evolve

the models and generate lower-level artifacts such as service contracts. DSL and

supporting tools promote iterative, incremental modeling and agile practices.

© Stefan Kapferer, Olaf Zimmermann, 2019.

Page 2

http://contextmapper.github.io/

Session Outline

 Presentation Part 1 (20 mins)

 Motivation

 Brief introduction to Microservice Architectures (MSA)

 Domain-Driven Design (DDD) and service decomposition

 Context Mapper overview

 Context Mapper Demo (20 mins)

 Presentation Part 2 (20 mins)

 Architectural refactoring

 Next steps in the BizDevOps tool & practice chain:

 Microservice Domain-Specific Language (MDSL)

 Microservice API Patterns (MAP)

 Q&A (15 mins)

 Input and feedback appreciated – this is ongoing research!

© Stefan Kapferer, Olaf Zimmermann, 2019.

Page 3

Session Outline

 Presentation Part 1 (20 mins)

 Motivation

 Brief introduction to Microservice Architectures (MSA)

 Domain-Driven Design (DDD) and service decomposition

 Context Mapper overview

 Context Mapper Demo (20 mins)

 Presentation Part 2 (20 mins)

 Architectural refactoring

 Next steps in the BizDevOps tool & practice chain:

 Microservice Domain-Specific Language (MDSL)

 Microservice API Patterns (MAP)

 Q&A (15 mins)

 Input and feedback appreciated – this is ongoing research!

© Stefan Kapferer, Olaf Zimmermann, 2019.

Page 4

 Many design issues, typically recurring

 per system/team

Policies reference
customer data

Data and control flow direction?

Data formats (norms, transformations)?

Frequency of message exchange?

Motivating Example: “Fictitious” Insurance Application Landscape

© Stefan Kapferer, Olaf Zimmermann, 2019.

Page 5

Design issue

(decision required)

Data duplication and/or

on-demand exchange?

Strict/eventual consistency?

Buy? Build? Rent? Technology?

Vendor? Team? (Sourcing, Staffing)

System or
Dev/Ops team

, per relationship, per interface

Client influence on API design and

stability/evolution (governance)?

API contracts and technologies?

A Consolidated Definition of Microservices

 Microservices architectures evolved from previous incarnations of

Service-Oriented Architectures (SOAs) to promote agility and elasticity

 Independently deployable, scalable and changeable services,

each having a single responsibility

 Modeling business capabilities

 Often deployed in lightweight containers

 Encapsulating their own state, and communicating via message-based

remote APIs (HTTP, queueing), IDEALly in a loosely coupled fashion

 Facilitating polyglot programming and persistence

 Leveraging DevOps practices including decentralized continuous delivery

and end-to-end monitoring (for business agility and domain observability)

© Olaf Zimmermann, 2019.

Page 6

Detailed analysis: Zimmermann, O., Microservices

Tenets: Agile Approach to Service Development

and Deployment, Springer Journal of Computer

Science Research and Development (2017)

https://www.ifs.hsr.ch/fileadmin/user_upload/customers/ifs.hsr.ch/Home/projekte/ZIO-CHOpenDay-CCaSAWAv10p.pdf
http://rdcu.be/mJPz

Open Problem: Service Decomposition

Page 7

Research and Development Questions

How can systems be decomposed and cut into services (forward engineering)?

How do the applied criteria and heuristics differ

from software engineering and software architecture “classics”

such as separation of concerns and single responsibility principle?

Which methods and practices do you use? Are they effective and efficient?

© Olaf Zimmermann, 2019.

Decomposition Heuristics

 Two-pizza rule (team size)

 Lines of code (in service implementation)

 Size of service implementation in IDE editor

 Simple if-then-else rules of thumb

 E.g. “If your application needs coarse-grained services, implement a SOA;

if you require fine ones, go the microservices way” (I did not make this up!)

 Non-technical traits, including “products not projects”

Context matters, as M. Fowler pointed out at Agile Australia 2018

(or: one size does not fit all)

© Olaf Zimmermann, 2019.

Page 8

What is wrong with these “metrics” and “best practice”

recommendations?

that do not suffice

https://martinfowler.com/articles/agile-aus-2018.html

Domain-Driven Design (DDD) to the Remedy

 Emphasizes need for modeling and communication

 Ubiquitous language (vocabulary) – the domain model

 Tactic DDD – “Object-Oriented Analysis and Design
(OOAD) done right”

 Emphasis on business logic in layered architecture

 Decomposes Domain Model pattern from M. Fowler

 Patterns for common roles, e.g. Entity, Value Object,

Repository, Factory, Service; grouped into Aggregates

 Strategic DDD – “agile Enterprise Architecture

and/or Portfolio Management”

 Models have boundaries

 Teams, systems and

their relations shown in

Context Maps of

Bounded Contexts

Page 9

© Olaf Zimmermann, 2019.

https://martinfowler.com/eaaCatalog/domainModel.html

A Strategic DDD Context Map with Relationships

 Insurance scenario modelled at https://contextmapper.github.io/

Page 10

© Stefan Kapferer, Olaf Zimmermann, 2019.

D: Downstream, U: Upstream; ACL: Anti-Corruption Layer, OHS: Open Host Service

Bounded
Context

https://contextmapper.github.io/
https://www.infoq.com/articles/ddd-contextmapping/
https://www.infoq.com/articles/ddd-contextmapping/
https://docs.microsoft.com/en-us/azure/architecture/patterns/anti-corruption-layer
http://www.methodsandtools.com/archive/archive.php?id=97

DDD Applied to (Micro-)Service Design

 M. Ploed is one of the “go-to-guys” here (find him on Speaker Deck)

 Applies and extends DDD books by E. Evans and V. Vernon

© Olaf Zimmermann, 2019.

Page 11

Reference: JUG CH presentation, Bern/CH, Jan 9, 2019

https://speakerdeck.com/mploed
https://speakerdeck.com/mploed/microservices-love-domain-driven-design-version-2
https://speakerdeck.com/mploed/microservices-love-domain-driven-design-version-2

DDD Applied to (Micro-)Service Design ctd., Source:

 N. Tune and S. Millett: Designing Autonomous Teams and Services

 Describe how to coevolve organizational and technical boundaries to

architect autonomous applications and teams based on DDD Bounded

Contexts and (micro-)services.

 O. Tigges: How to break down a Domain to Bounded Contexts

 Presents criteria to be used to identify Bounded Contexts.

 R. Steinegger et al.: Overview of a Domain-Driven Design Approach to

Build Microservice-Based Applications

 Describes a development process to build MSA applications based on the

DDD concepts, emphasizing the importance of decomposing a system in

several iterations.

 A. Brandolini: Introducing Event Storming

 Proposes a workshop-based technique to analyze a domain and discover

bounded contexts, following events through the system/business process

and detecting commands, entities (and more) along the way.

© Stefan Kapferer, Olaf Zimmermann, 2019.

Page 12

https://www.oreilly.com/library/view/designing-autonomous-teams/9781491994320/
https://speakerdeck.com/otigges/how-to-break-down-a-domain-to-bounded-contexts
https://www.semanticscholar.org/paper/Overview-of-a-Domain-Driven-Design-Approach-to-Steinegger-Giessler/c27543389bf0f9d5ac337963c474496979ef2a2d
https://leanpub.com/introducing_eventstorming

From DDD to RESTful HTTP APIs

 “Implementing DDD” book by V. Vernon (and blog posts, presentations):

 No 1:1 pass-through (interfaces vs. application/domain layer)

 Bounded Contexts (BCs) realized by API provider: one service API and IDE

project for each team/system BC (a.k.a. microservice)

 Aggregates supply API resources (or responsibilities) of service endpoints

 Services donate top-level (home) resources in BC endpoint as well

 The Root Entity, the Repository and the Factory in an Aggregate suggest

top-level resources; contained entities yield sub-resources

 Repository lookups as paginated queries (GET with search parameters)

 Additional rules of thumb (from our experience and additional sources):

 Master data and transactional data go to different contexts/aggregates

 Creation requests to Factories become POSTs

 Entity modifiers become PUTs or PATCHes

 Value Objects appear in the custom mime types representing resources

© Olaf Zimmermann, 2019.

Page 13

https://www.youtube.com/watch?v=lUCLFOISuXk
https://martinfowler.com/bliki/BoundedContext.html
https://martinfowler.com/bliki/DDD_Aggregate.html
http://gorodinski.com/blog/2012/04/14/services-in-domain-driven-design-ddd/
https://martinfowler.com/eaaCatalog/repository.html
https://microservice-api-patterns.org/
https://www.ifs.hsr.ch/index.php?id=15666&L=4

Context Mapper: A DSL for Strategic DDD

 Eclipse plugin, based on:

 Xtext, ANTLR

 Sculptor (tactic DDD DSL)

 Creator: S. Kapferer

 Term projects @ HSR FHO

© Stefan Kapferer, Olaf Zimmermann, 2019.

Page 14

SK: Shared Kernel, PL: Published Language

D: Downstream, U: Upstream

ACL: Anti-Corruption Layer, OHS: Open Host Service

http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
https://www.infoq.com/articles/ddd-contextmapping/
https://www.infoq.com/articles/ddd-contextmapping/
https://docs.microsoft.com/en-us/azure/architecture/patterns/anti-corruption-layer
http://www.methodsandtools.com/archive/archive.php?id=97

Session Outline

 Presentation Part 1 (20 mins)

 Context Mapper Demo (20 mins)

 Part 1: DSL (Editing, Validations)

 Part 2: Code Generation (PlantUML, MDSL)

 Part 3: Architectural Refactorings (ARs)

 Presentation Part 2 (20 mins)

 Architectural refactoring

 Next steps in the BizDevOps tool & practice chain:

 Microservice Domain-Specific Language (MDSL)

 Microservice API Patterns (MAP)

 Q&A (15 mins)

© Stefan Kapferer, Olaf Zimmermann, 2019.

Page 15

 Goal: provide clear and concise interpretation of the strategic DDD

patterns – and valid combinations of them

Reference: https://contextmapper.github.io/docs/language-model/

Context Mapper: Meta-Model and Semantic Rules

© Stefan Kapferer, Olaf Zimmermann, 2019.

Page 16

https://contextmapper.github.io/docs/language-model/

Context Mapper: DSL implements Meta-Model and Semantics

 A Domain-Specific Language (DSL) for DDD:

 Formal, machine-readable DDD Context Maps via editors and validators

 Model/code generators to convert models into other representations

 Model transformations for refactorings (e.g., “Split Bounded Context”)

© Stefan Kapferer, Olaf Zimmermann, 2019.

Page 17

Context Mapper: Generators (DDD DSL as Input)

 PlantUML generator

 Generate graphical

representations of model

 Service Cutter input

generator

 Use structured approach

to identify service

candidates

 Term project/bachelor

thesis at HSR FHO

 MDSL service contract

generator

 Generate technology-

agnostic (micro-)service

contracts from Bounded

Contexts/Aggregates

© Stefan Kapferer, Olaf Zimmermann, 2019.

Page 18

http://servicecutter.github.io/

http://plantuml.com/
http://servicecutter.github.io/
https://socadk.github.io/MDSL/
http://servicecutter.github.io/

Session Outline

 Presentation Part 1 (20 mins)

 Context Mapper Demo (20 mins)

 Presentation Part 2 (20 mins)

 Architectural refactoring

 Next steps in the BizDevOps tool/practice chain:

 Microservice Domain-Specific Language (MDSL)

 Microservice API Patterns (MAP)

 Q&A (15 mins)

© Stefan Kapferer, Olaf Zimmermann, 2019.

Page 19

Open Problem: Refactoring to Microservices

Page 20

Research and Development Questions

How to migrate a modular monolith to a services-based cloud application

(a.k.a. cloud migration, brownfield service design)?

Can “micro-migration/modernization” steps be called out?

Which techniques and practices do you employ? Are you content with them?

© Olaf Zimmermann, 2019.

Code Refactoring vs. Architectural Refactoring

 Refactoring are “small behavior-preserving transformations”

(M. Fowler 1999)

 Code refactorings such as “extract method”:

 Operate on Abstract Syntax Tree (AST)

 Based on compiler theory, so well understood and

automation possible (e.g., in Eclipse Java/C++)

 Catalog and commentary:

 http://refactoring.com/ and https://refactoring.guru/

 Architectural refactorings are different:

 Resolve one or more bad architectural smells, have impact on quality

attributes

 Bad architectural smell: suspect that architecture is no longer adequate (“good

enough”) under current requirements and constraints (may differ from original ones)

 Are carriers of reengineering knowledge (patterns?)

 Can only be partially automated

© Olaf Zimmermann, 2019.

Page 21

http://refactoring.com/
https://refactoring.guru/

From Biz and Dev to Ops: Bad Smells and Refactorings

Reference: Brogi, A., Neri D., Soldani, J., Zimmermann, O., Design Principles, Architectural

Smells and Refactorings for Microservices: A Multivocal Review. CoRR abs/1906.01553

and Springer SICS (2019) (online, report PDF, short presentation)

© Olaf Zimmermann, 2019.

Page 22

In scope of DDD and Context Mapper

https://rdcu.be/bQfr6
https://arxiv.org/pdf/1906.01553
https://www.summersoc.eu/wp-content/uploads/2019/06/4.10-Davide-Neri-Design-Principles-Architectural-Smells-Refactorings-For-Microservices.pdf

Context Mapper: Refactor by Decomposition Criteria (DC)?

 As a first step, we collected Decomposition Criteria (DC):

 From literature and own experience; criteria catalog in Service Cutter

© Stefan Kapferer, Olaf Zimmermann, 2019.

Page 23

Reference: Service Decomposition as a Series of

Architectural Refactorings, Stefan Kapferer, student

research project HSR FHO 2019 (thesis PDF)

https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria
https://eprints.hsr.ch/784/

Context Mapper: Architectural Refactorings (ARs)

 Architectural Refactorings (ARs)

then derived from mined/observed

Decomposition Criteria (DC)

 Compiled from literature and

own experience

 Decompose (split, extract)

and compose (merge) DDD

bounded contexts and

aggregates.

© Stefan Kapferer, Olaf Zimmermann, 2019.

Page 24

Reference: Service Decomposition as a Series of Architectural Refactorings,

Stefan Kapferer, student research project HSR FHO 2019 (thesis PDF)

https://eprints.hsr.ch/784/

How to find suited granularities and achieve loose coupling?

Page 25

© Olaf Zimmermann, 2019.

Context

We have decided to go the SOA and/or microservices way. We use DDD for

domain modeling and agile practices for requirements elicitation.

Research and Development Problems:

How to identify/specify an adequate number of API endpoints and operations?

How to design message representation structures

so that API clients and API providers are loosely coupled

and meet their (non-)functional requirements IDEALly?

Which patterns, principles, and practices do you use

(code first, contract first)? Do they work well?

Contracts in Microservice Domain-Specific Language (MDSL)

Page 26

How does this notation compare

to Swagger/JSON Schema

and WSDL/XSD?

© Olaf Zimmermann, 2019.

 Data contract

 Compact, technology-neutral

 Inspired by JSON, regex

 Endpoints and operations

 Elaborate, terminology from

MAP domain model

 Abstraction of REST resource

 Abstraction of WS-* concepts

 API client, provider, gateway;

governance (SLA, version, …)

Reference: https://socadk.github.io/MDSL/index

https://socadk.github.io/MDSL/index

Microservice API Patterns (MAP) Categories

 Identification Patterns:

 DDD as one practice to

find candidate endpoints

and operations

 Evolution Patterns:

 Recently workshopped

(EuroPLoP 2019)

© Olaf Zimmermann, 2019.

Page 27

http://microservice-api-patterns.org

http://microservice-api-patterns.org/

Microservices API Patterns (MAP): Patterns by Category

Page 28

© Olaf Zimmermann, 2019.

http://microservice-api-patterns.org

EuroPLoP 2019

EuroPLoP 2017

EuroPLoP 2018

http://microservice-api-patterns.org/

Vision: Agile Tools for BizDevOps (in DDD and MSA Context)

Page 29

© Olaf Zimmermann, 2019.

Selected (Agile) Practices (our focus here) Tools (our proposal)

Biz

Dev

Ops

Enterprise Architecture/SAFe

Strategic DDD (System Decomposition)
Context Mapper

User Story Telling, Mapping, Splitting

Event Storming, Tactic DDD

API Design: abstract/conceptual,

platform-specific (contract first, code first)

CI/CD Pipelining, Monitoring, …

MDSL Editor & Linter

(with MAP Decorators)

Open API Specification (f.k.a.

Swagger), AsyncAPI, …

BaU, e.g. Spring Boot, Spring

MVC, RabbitMQ, Kafka, etc.

BaU, e.g. GitLab, Cloud

tools, Docker, Kubernetes

Business as Usual (BaU):

whiteboard/flipchart, C4,

drawing tool, issue tracker

Service Implementation and Integration

DDD Context Map for our Tools

Page 30

© Stefan Kapferer, Olaf Zimmermann, 2019.

This PlantUML: generated with

Summary and Outlook

 Microservices have many predecessors (evolution not revolution)

 Implementation approach for, and sub-style of, SOA (7 tenets)

 More emphasis on autonomy and decentralization

(of decisions, of data ownership), less vendor-driven

 Automation advances and novel target environments

 Context Mapper (open source/term thesis projects @ HSR)

 DSL for modeling strategic DDD Context Maps

 Tool support to evolve models iteratively (ARs)

 PlantUML, Service Cutter, and MDSL generation

 Microservice Domain-Specific Language (MDSL) for service contracts

 Microservice API Patterns (MAP) language & website

 20+ patterns, sample implementation, tutorial

© Stefan Kapferer, Olaf Zimmermann, 2019.

Page 31

Thank you very much! Let’s move on to Q&A and discussion…

https://microservice-api-patterns.org/

Feedback appreciated…

 Did we catch the essence of strategic DDD (context mapping)?

 Is the DDD DSL expressive enough, but also easy to understand?

 Is anything missing in terms of functionality?

 Which decomposition criteria do you use when cutting/carving services?

 Which architectural refactorings would you like to see in future versions?

 Which model transformations and code generators would be valuable?

 E.g. should we look into reverse transformations (from code to DSL)?

 Can you envision to apply Context Mapper, MDSL, MAP in practice?

 Do tools and notations have the potential to improve productivity & quality?

 What are critical success factors for adoption (NFRs)?

 Which API design patterns and contract language features are missing?

Page 32

© Stefan Kapferer, Olaf Zimmermann, 2019.

